Find the Closest Palindrome(字符串/贪心/模拟)

该文阐述了一个算法问题,即给定一个不超过18位的正整数字符串,找出离它最近的回文数。通过分析,提出了三种可能的场景:原数的前半部分加上反转的前半部分、原数加1后的形式以及减1后的形式。在这些场景中选择距离最小且值最小的回文数。文章提供了相应的C++代码实现。
摘要由CSDN通过智能技术生成

题目

题意

给定一个正整数字符串,长度不超过18,求离他最近的回文数字,如果存在两个距离一样近,取值小的那个。
令,不可以取这个数本身。

字符串取值范围 [ 1 , 1 0 18 − 1 ] [1, 10^{18}-1] [1,10181]

example

Input: n = "123"
Output: "121"

思路

贪心,由于要取最近的数字,要使数字变化尽量小。所以,我们尽量保留前半部分。

我们将数抽象成 fir + mid + sec这3个部分,fir表示前半部分,sec表示后半部分,mid表示中位数(偶数个数时为空串)。

  • 第一种想得的就是fir + mid + rev_fir这种组合,如24 – 22, 103 – 101。
  • 但对于80,其最近的是77,不是88。因此,第二种考虑的场景是 fir + mid加1后的场景,如29 – 33,109 – 111。
  • 类似的,第三种考虑的场景是 fir + mid减1后的场景,如 80 – 77,212 – 202

最终,我们在这三种场景中,选出距离最小、值最小的那个即可。

此外,我们还要注意,对于99,999,9999这种数,fir + mid加1后数位会发生改变,我们需要考虑下。
类似的,还有10,100,1000这类数。

代码写的搓,凑合看看吧,,

代码

class Solution {
public:
    // fir + mid
    string cal1(string fir, string mid) {
        string rev_fir = fir;
        reverse(rev_fir.begin(), rev_fir.end());
        
        string m1 = fir + mid + rev_fir;
        
    //	cout << "fir: " << fir << endl;
        cout << "m1: " << m1 << endl;
        
        return m1;
    }
    // fir + mid: add one
    string cal2(string fir, string mid) {
        int add = 0;
        if (mid.length() == 0) {
            add = 1;
        } else if (mid[0] == '9') {
            mid[0] = '0';
            add = 1;
        } else {
            mid[0] += 1;
        }
        
        int len = fir.length();
        for (int i = len - 1; i >= 0; --i) {
            if (!add) {
                break;
            }
            if (fir[i] == '9') {
                fir[i] = '0';
            } else {
                fir[i] += add;
                add = 0;
            }
        }
        if (add) {
            fir = '1' + fir;
            // discard one digit
            if (mid == "") { // 99
                mid = fir.back();
                fir.pop_back();
            } else { // 9, 999
                mid = "";
            }
        }
        string rev_fir = fir;
        reverse(rev_fir.begin(), rev_fir.end());
        
        string m2 = fir + mid + rev_fir;
        cout << "m2: " << m2 << endl;
        
        return m2;
    }

    // fir + mid: sub one
    string cal3(string fir, string mid) {
        int sub = 0;
        if (mid.length() == 0) {
            sub = 1;
        } else if (mid[0] == '0') {
            mid[0] = '9';
            sub = 1;
        } else {
            mid[0] -= 1;
        }
        
        int len = fir.length();
        for (int i = len - 1; i >= 0; --i) {
            if (!sub) {
                break;
            }
            if (fir[i] == '0') {
                fir[i] = '9';
            } else {
                fir[i] -= sub;
                sub = 0;
            }
        }
        
        if (fir[0] == '0') { // fir == 0999
            if (mid == "") { //  1000, 10
                mid = "9";
                fir = fir.substr(1);
            } else { // 100, 10000
                fir = fir.substr(1) + mid;
                mid = "";
            }
        }
        string rev_fir = fir;
        reverse(rev_fir.begin(), rev_fir.end());
        
        string m3 = fir + mid + rev_fir;
        cout << "m3: " << m3 << endl;
        
        return m3;
    }

    string nearestPalindromic(string n) {
        
        int len = n.length();
        
        string mid = "";
        if (len & 1) {
            mid += n[len/2];
        }
        string fir = n.substr(0, len / 2);
        string m1 = cal1(fir, mid);
        string m2 = cal2(fir, mid);
        string m3 = cal3(fir, mid);
        
        list<string> res = {m1, m2, m3};
        
        string ans;
        long long val = strtoll(n.c_str(), NULL, 10);
        long long diff = val, ans_val = val;
        
        for (auto m: res) {
            if (m == n) {
                continue;
            }
            long long cur = strtoll(m.c_str(), NULL, 10);
            long long cur_diff = llabs(cur - val);
            if (diff > cur_diff || (diff == cur_diff && cur < ans_val)) {
                diff = cur_diff;
                ans = m;
                ans_val = cur;
            }
        }
        
        return ans;
    }

};

GZH

对方正在debug

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值