题意
给定包含n个节点的树,以及k(1<=k<=n)。已知有k个两两互不相同的节点(不妨称为染色节点)分布在这n个节点中,定义“好节点”为,距离这n个节点的距离之和最小。
两个节点的距离为它们之间的边的个数。
问,如果k个节点在树上随机均匀分布,期望的“好节点”数量有多少。
思路
当k等于1时,距离染色节点最近的,就是它本身,因此,“好节点”有且仅有一个。
当k等于3时,不妨设它们为a,b,c,我们将它们之间的路径两两相连,那么三个节点必定有一个为中间节点,不妨设为a,此时,a显然是好节点。如下图,我们选择d节点,或者f节点,会让距离和更大,选择a节点距离和最小,为2+0+1=3。因此,“好节点”有且仅有一个。
依此类推,当k为奇数时,“好节点”有且仅有一个。
证明:定义s[i]表示以i为根结点的子树,包含的染色节点的数量。假设“好节点”为rt,rt肯定为这k个节点的最近公共祖先。
- 当我们往上移动,选择rt的父亲节点(假设有父亲节点)时,显然会增加总体距离k * 1,不划算。
- 当我们选择rt的所有子节点中,含染色节点树最多的j节点,此时,增加总体距离为(k-s[j])-s[j]=k-2s[j],因为k为奇数,因此k-2s[j],又因为s[j]是最大的那个,因此,选择rt的子节点做为新节点,会带来更多距离。
得证。
当k为偶数时,能做为“好节点”的节点,必然满足条件:它的子树上的染色节点数恰好为k/2个。
证明:假设a为好节点,且它的子树上的染色节点数h小于k/2,假设它的父节点为p,当我们将节点从a迁移到h时,新增的距离 代价为 h - (k-h) = 2h-k <0,说明p节点更优,与a是好节点矛盾,得证。
子树上的染色节点数大于k/2时,也可以用类似方法证明。
利用该结论,我们可以用排列组合的方式,枚举所有的节点i,从节点i的子树取k/2节点进行染色,再从排除i的子树的剩余节点取k/2节点染色,就是实际可以用于组成好节点的边的个数。
定义s[i]为i的子树大小,
对应的期望边数为 ∑ i = 1 n C s [ i ] k / 2 ∗ C n − s [ i ] k / 2 C n k \sum_{i=1}^{n}\frac{C_{s[i]}^{k/2}*C_{n-s[i]}^{k/2}}{C_{n}^{k}} ∑i=1nCnkCs[i]k/2∗Cn−s[i]k/2。
对应的期望好节点个数为(有res条边,对应res+1个好节点 ),1+期望边数=
1
+
∑
i
=
1
n
C
s
[
i
]
k
/
2
∗
C
n
−
s
[
i
]
k
/
2
C
n
k
1+\sum_{i=1}^{n}\frac{C_{s[i]}^{k/2}*C_{n-s[i]}^{k/2}}{C_{n}^{k}}
1+∑i=1nCnkCs[i]k/2∗Cn−s[i]k/2
代码过程需要用取模运算,逆元,组合数的计算。
代码
看看官方代码,不码了(虽然觉得官方代码风格比较丑
//Was yea ra,rra yea ra synk sphilar yor en me exec hymme METAFALICA waath!
#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,tune=native")
#include<bits/stdc++.h>
using namespace std;
#define rg register
#define ll long long
#define ull unsigned ll
#define lowbit(x) (x&(-x))
#define djq 1000000007
const double eps=1e-10;
const short sint=0x3f3f;
const int inf=0x3f3f3f3f;
const ll linf=0x3f3f3f3f3f3f3f3f;
const double alpha=0.73;
const double PI=acos(-1);
inline void file(){
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
}
char buf[1<<21],*p1=buf,*p2=buf;
inline int getc(){
return p1==p2&&(p2=(p1=buf)+fread(buf,1,(1<<20)+5,stdin),p1==p2)?EOF:*p1++;
}
//#define getc getchar
inline ll read(){
rg ll ret=0,f=0;char ch=getc();
while(!isdigit(ch)){if(ch==EOF)exit(0);if(ch=='-')f=1;ch=getc();}
while(isdigit(ch)){ret=ret*10+ch-48;ch=getc();}
return f?-ret:ret;
}
inline void rdstr(char* s){
char ch=getc();
while(ch<33||ch>126) ch=getc();
while(ch>=33&&ch<=126) (*s++)=ch,ch=getc();
}
#define ep emplace
#define epb emplace_back
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define it iterator
#define mkp make_pair
#define naive return 0*puts("Yes")
#define angry return 0*puts("No")
#define fls fflush(stdout)
#define rep(i,a) for(rg int i=1;i<=a;++i)
#define per(i,a) for(rg int i=a;i;--i)
#define rep0(i,a) for(rg int i=0;i<=a;++i)
#define per0(i,a) for(rg int i=a;~i;--i)
#define szf sizeof
typedef vector<int> vec;
typedef pair<int,int> pii;
struct point{ int x,y; point(int x=0,int y=0):x(x),y(y) {} inline bool operator<(const point& T)const{ return x^T.x?x<T.x:y<T.y; }; };
inline int ksm(int base,int p){int ret=1;while(p){if(p&1)ret=1ll*ret*base%djq;base=1ll*base*base%djq,p>>=1;}return ret;}
inline void pls(int& x,const int k){ x=(x+k>=djq?x+k-djq:x+k); }
inline int add(const int a,const int b){ return a+b>=djq?a+b-djq:a+b; }
inline void sub(int& x,const int k){ x=(x-k<0?x-k+djq:x-k); }
inline int inc(const int a,const int b){ return a<b?a-b+djq:a-b; }
inline void ckmn(int& x,const int k){ x=(k<x?k:x); }
inline void ckmx(int& x,const int k){ x=(k>x?k:x); }
const int lim=2e5;
int fac[200005],ifac[200005];
inline int C(int n,int m){ return (m<=n&&m>=0&&n>=0)?1ll*fac[n]*ifac[m]%djq*ifac[n-m]%djq:0; }
void initC(){
fac[0]=ifac[0]=1;
rep(i,lim) fac[i]=1ll*fac[i-1]*i%djq;
ifac[lim]=ksm(fac[lim],djq-2);
per(i,lim-1) ifac[i]=1ll*ifac[i+1]*(i+1)%djq;
}
int n,k,u,v,sz[200005];
vec e[200005];
void dfs(int x,int fa){
sz[x]=1;
for(int y:e[x]) if(y^fa) dfs(y,x),sz[x]+=sz[y];
}
signed main(){
//file();
initC();
n=read(),k=read();
rep(i,n-1) u=read(),v=read(),e[u].epb(v),e[v].epb(u);
dfs(1,0);
if(k&1) return 0*puts("1");
else{
int ans=0;
for(rg int i=2;i<=n;++i) pls(ans,1ll*C(sz[i],k/2)*C(n-sz[i],k/2)%djq);
ans=1ll*ans*ksm(C(n,k),djq-2)%djq;
pls(ans,1);
printf("%d\n",ans);
}
return 0;
}
同名公众号:对方正在debug