(脑肿瘤分割笔记:九)用于医学图像分割的多尺度L1损失对抗网络

本文只是记录个人阅读论文的感想与思考!难免存在错误!如若理解有误还请各位大佬指出!感谢!

目录

相关概念

欧式距离

L2范数

L1损失函数

L1损失函数的优缺点 

L2损失函数

L2损失函数的优缺点

论文:SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation

摘要

Introduction

方法

多尺度L1损失定义

SegAn仍然存在的缺点 


首先明确理解一些概念。

相关概念

欧式距离

假设X和Y都是一个n维的向量,即X=(x1,x2......xn),Y=(y1,y2.....yn),则欧式距离定义为

L2范数

假设X是n维特征X=(x1,x2,....xn),则L2范数等于

L1损失函数

L1损失函数也被称为平均绝对误差(MSE),设标签为Y=(y1,y2,...ym​)1×m,样本

Xij(n×m)​经过模型处理得到预测f(X)=Y^。L1损失函数记为预测结果和真实标签的平均误差。则L1损失函数的定义为

L1损失函数的优缺点 

缺点:1)梯度恒定,不论预测值是否接近真实值,这很容易导致发散࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值