本文只是记录个人阅读论文的感想与思考!难免存在错误!如若理解有误还请各位大佬指出!感谢!
目录
论文:SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation
首先明确理解一些概念。
相关概念
欧式距离
假设X和Y都是一个n维的向量,即X=(x1,x2......xn),Y=(y1,y2.....yn),则欧式距离定义为
L2范数
假设X是n维特征X=(x1,x2,....xn),则L2范数等于
L1损失函数
L1损失函数也被称为平均绝对误差(MSE),设标签为Y=(y1,y2,...ym)1×m,样本
Xij(n×m)经过模型处理得到预测f(X)=Y^。L1损失函数记为预测结果和真实标签的平均误差。则L1损失函数的定义为
L1损失函数的优缺点
缺点:1)梯度恒定,不论预测值是否接近真实值,这很容易导致发散