(脑肿瘤分割笔记:四十三)用于脑胶质瘤分割的上下文感知网络

 Title:CANet: Context Aware Network for Brain Glioma Segmentation

摘要-Abstract

目前的一些脑肿瘤分割方法缺乏强有力的策略来整合肿瘤细胞及其周围环境的上下文,良好的整合上下文信息已经被证明是处理局部(边界)模糊的基本方法。本文提出了一种上下文感知网络(CA-Net),很好的整合了肿瘤细胞以及其周围的上下文信息。

CA-Net从卷积空间和特征交互图获取具有上下文的高维特征和鉴别特征。此外作者进一步提出了上下文引导的注意条件随机场来进行选择性的聚合特征。

解决的问题

类间(边界模糊)是脑肿瘤分割中的常见问题。由于不同类别的体素可能共享相似的强度值或特征表示,因此如果只考虑孤立的体素,就很难实现精确的密集体素分割问题(本文考虑要解决的问题)

为了解决这一问题,作者通过探索胶质瘤细胞与周围环境的特征交互图来了解他们之间的关系信息

本文的贡献

引入特征交互图推理作为一个并行的辅助分支来建模胶质瘤细胞和周围环境的关系。中间特征表示在自定义上下文引导的注意条件随机场框架中进一步开发和聚合。

将提出的CGA-CRF推论的平均场近似表示为卷积操作,而CGA-CRF实现为顺序的深度神经网络,这个模块可以无缝嵌入任何深度的神经架构,以实现端到端的训练(泛化能力强)。

在脑肿瘤分割中常常存在着不平衡和类间干扰的问题,目前的解决方案是考虑使用级联的网络结构,但是级联的网络结构主要关注某一特定网络阶段的一个肿瘤区域,无法推断不同肿瘤区域间的关系

方法-Method

首先详细的描述了所提出的特征交互图。然后作者引入了新的特征融合模块CGA-CRF,它可以选择性的聚合来自不同上下文的特征,并学习生成最优的特征。最后将CGA-CRF中的平均场更新为序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值