基于DDAUNet的CT食管肿瘤分割

本文介绍了一种基于DDAUNet的CT食管肿瘤分割方法,利用扩张密集注意力网络,结合空间和通道注意机制,实现端到端的肿瘤分割。网络结构包括下采样和上采样路径,通过扩展的密集块和注意门提高分割准确性。损失函数主要采用Dice系数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

在CT图像中手动或自动描绘食道肿瘤是非常具有挑战性的。这是由于肿瘤与邻近组织的对比度低,食道的解剖结构变化,以及偶尔存在异物(如喂食管)。

本文提出了一种基于卷积神经网络的全自动端到端食管肿瘤,本文所提出的网络称为扩张密集注意力网络,利用每个密集块中的空间和通道注意力门。选择性的集中在决定因素的特征图和区域,扩张用于管理GPU内存和增加网络的感受野。

本文的贡献在于:1)提出了一个端到端的CNN用于CT扫描的食管GTV分割。与之前的研究不同,我们关注的是更具有挑战性的肿瘤区域(GTV)。所提出的方法是端到端的,没有复杂的预处理或后处理步骤,并且除了CT扫描之外不使用任何信息

2)引入了扩展的密集注意块,利用空间和通道注意来强调GTV的相关特征。此外,扩张层用于支持接受野的指数级扩展,并在不损失分辨率的情况下减小网络的大小

方法

网络结构

网络的结构如下图所示

整个网络由三部分组成,下采样路径用于提取上下文特征,上采样路径用于检索提取过程中丢失的分辨率。在每个层次上,本文与之前的工作不同,使用了扩展密集空间和通道注意块(DDSCAB),它由一个扩展密集块(DDB)和一个空间注意门(SpA)和一个通道注意门(ChA1)组成,DDSCAB块中的层之间使用循环连接模式通过重用特征映射提供了深度监督,而扩展层则以指数方式增加了接受域。

空间注意力门用于主要构建块

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值