This time, you are supposed to find A+B where A and B are two polynomials.
Input Specification:
Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:K N1 aN1 N2 aN2 … NK aNK
where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1,2,⋯,K) are the exponents and coefficients, respectively. It is given that 1≤K≤10,0≤NK <⋯<N2 <N1 ≤1000.
Output Specification:
For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.
Sample Input:
2 1 2.4 0 3.2
2 2 1.5 1 0.5
Sample Output:
3 2 1.5 1 2.9 0 3.2
接下来是AC代码:
#include <stdio.h>
#include <string.h>
int main(int argc, char *argv[]) {
//幂数最大为1000,设置为1010
const int maxn = 1010;
//count为计数器
int k,n,count=0,i;
//用数组来存储多项式可以省去很多麻烦
double p[maxn];
double a;
//将数组中所有元素初始化为0
memset(p,0,sizeof(p));
//输入第一行数据并运算
scanf("%d",&k);
for(i=0;i<k;i++){
scanf("%d %lf",&n,&a);
p[n]+=a;
}
//输入第二行数据并运算
//第二行输入完之后即相加成功
scanf("%d",&k);
for(i=0;i<k;i++){
scanf("%d %lf",&n,&a);
p[n]+=a;
}
//遍历数组,得到项数
for(i=0;i<maxn;i++){
if(p[i]!=0){
count++;
}
}
//输出
printf("%d",count);
for(i=maxn-1;i>=0;i--){
if(p[i]!=0){
printf(" %d %.1lf",i,p[i]);
}
}
return 0;
}
需要注意:
1.输出时幂次从小到大,格式上需要保留一位小数
2.题目的输入和输出都是系数非零项
3.有些人会考虑再输入的过程中用count计数,这里就需要注意正负抵消的问题,如果幂数相同的两个项的系数为相反数,这样相加之后会抵消,这是要注意count需要自减,所以不推荐这样的写法,比较麻烦
4.memset函数的简单用法(不全可以自行查找):memset(数组名称,要设置的数,设置的长度);可以参考我的代码来看,很容易懂
解题思路:
1.用double型数组表示多项式,其中p[n]表示幂数为0的项的系数,初始值为0,用count计数,初始值为0
2.可以考虑用memset函数来进行数组元素初始化,它包含在<string.h>中,记得加上
3.两个多项式分别输入,输入第二个多项式的时候将对应系数直接加到第一个多项式上面,可以避免抵消问题
4.计算非零系数项的个数count并输出,然后按照格式输出多项式
本文详细介绍了一种解决多项式加法问题的算法,通过使用double型数组存储多项式系数,实现了高效的数据处理。文章提供了完整的AC代码示例,解释了输入输出规格,并分享了解题思路,包括使用memset进行数组初始化的方法。
798

被折叠的 条评论
为什么被折叠?



