我终于理解辗转相除法了

辗转相除法求最大公约数


辗转相除法

有两整数a和b( a>b ) :

① a%b得余数c

② 若c=0,则b即为两数的最大公约数

③ 若c≠0,则a=b,b=c,再回去执行①

例如求27和15的最大公约数过程为:

27÷15 余12
15÷12余3
12÷3余0因此,3即为最大公约数

要想解释辗转相除法的原理,需要先知道以下两点:

一、一个一般定理:
如果a是任一整数而b是任一大于零的整数,则我们总能找到一整数q,使
a=bq+r
这里r是满足不等式0<=r<b的一个整数。

二、最大公因子的表示方法:
如果整数a和b的最大公因子是d,则表示为d=(a,b) (不知道现在教科书上是怎么表示的)

给定a和b(a>=b)两个整数,求最大公因子d。
根据上边给的定理,可以将a写成
a=bq+r
辗转相除法是告诉我们
(a,b)=(b,r)
即a和b的最大公因数和b和r(r是a除以b的余数)的最大公因数是相等的。

原理:因为对任意同时整除a和b的数u,有
a=su,b=tu,
它也能整除r,因为r=a-bq=su-qtu=(s-qt)u。
反过来每一个整除b和r的整数v,有
b=s’v , r=t’v
它也能整除a,因为a=bq+r=s’vq+t’v=(s’q+t’)v.
因此a和b的每一个公因子同时也是b和r的一个公因子,反之亦然。这样由于a和b的全体公因子集合与b和r的全体公因子集合相同,所以a和b的最大公因子必须等于b和r的最大公因子,这就证明了上边的等式。即(a,b)=(b,r)。



以下是辗转相除法求最大公约数算法实现:

int fun(int a,int b)
{
    int t,m;
    int c;
    if (a < b)                                              
    {
        t = a;
        a = b;
        b = t;
    }
    m = a * b;
    
    
    c = a % b;                                          
    while (c != 0)                                      
    {
        a = b;                                              
        b = c;                                          
        c = a % b;                                      
    }
    
    return b;
}

而求最小公倍数,用最小公倍数算法:

最小公倍数=两整数的乘积÷最大公约数

即可

辗转相除法是一种求解最大公约数的常见算法之一。在Python中,可以使用辗转相除法来求解两个数的最大公约数。 使用辗转相除法求解最大公约数的步骤如下: 1. 首先,将较大的数赋值给变量m,将较小的数赋值给变量n。如果m小于n,则交换m和n的值,确保m大于n。 2. 通过使用辗转相除法的基本原理,将n赋值给r,将m除以n的余数赋值给n,然后将r赋值给m。重复这一步骤,直到n等于0为止。 这意味着m就是最大公约数。 下面是一个使用辗转相除法求解最大公约数的Python代码示例: ```python def gcd(m, n): if m < n: m, n = n, m while n != 0: r = m % n m, n = n, r return m # 示例调用 a = 24 b = 36 result = gcd(a, b) print("最大公约数为:", result) ``` 在这个示例中,我们定义了一个名为gcd的函数,这个函数接受两个参数m和n,并返回它们的最大公约数。然后,我们定义了两个变量a和b,并赋予它们具体的值,然后调用gcd函数并打印结果。 希望这个例子可以帮助你理解辗转相除法在Python中的应用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Python基于辗转相除法求解最大公约数的方法示例](https://download.csdn.net/download/weixin_38629801/12869734)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [【Python】用辗转相除法求两个正整数的最大公约数](https://blog.csdn.net/qq_32532663/article/details/105750361)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值