离散数学思维导图 - 集合论,命题逻辑,谓词逻辑,二元关系,特殊关系,图论,树

离散数学思维导图

在这里插入图片描述

大纲:

	预备知识
		1.集合论
			set
				表示方法
					大写字母表示
					枚举法(显示法)
					叙述法(隐式法)
					归纳法
					递归指定集合法
					文氏图解法
				几个特殊集合
					空集(绝对唯一)
					全集(相对唯一)
					无限集
						等势
							一一对应
								两个有限集合等势当且仅当它们的元素个数相同;
								可数集合可以和其可数的真子集等势.
						可数集合
							基数(阿列夫0)
								∈阿列夫1(开区间(0,1)的基数)
						不可数集合
							既不是有限集
							也不是可数集的集合
				重要定义
					集合A的元素个数: |A|(基数)
					集族(Power Set)
						集合作为元素构成
						幂集
							所有不同子集构成
					⊕:对称差运算
						
					补集
						
						相对补集A-B(差集)
					德摩根律
						
			重要题型
				
	数理逻辑
		命题逻辑
			联结词
				┐
					否定
				∧
					合取
				∨
					析取
				
					异或
						“P异或Q”称为P与Q的不可兼或
				→
					蕴涵
						P称为蕴涵式的前件,Q称为蕴涵式的后件
							若P,则Q
							P仅当Q
							只要P, 就Q
							只有Q,才P
							除非Q,才P
							除非Q,否则非P
							P是Q的充分条件
						P→Q为假当且仅当P为真且Q为假
				↔
					等价
						P当且仅当Q
				优先级:否定→合取→析取→蕴涵→等价
			命题公式分类
				永真公式(重言式)
					满足式(一定)
				永假公式(矛盾式)
				G在解释I下是真的:I满足G;  G在解释I下是假的:I弄假于G.
				公式G、H等价 ↔ 公式G↔H是永真公式
					G = H 不是命题公式, G↔H是命题公式
			范式
				定义
					命题变元或命题变元的否定称为文字
					有限个文字的析取称为析取式(也称为子句)
					有限个文字的合取称为合取式(也称为短语)
					P与┐P称为互补对
					包括单个
				有限个短语的析取式称为析取范式
				有限个子句的合取式称为合取范式
				主析取范式
					每一个短语都是极小项
					必须且只能包含使得公式真值为真的那些解释对应的极小
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值