离散数学思维导图
大纲:
预备知识
1.集合论
set
表示方法
大写字母表示
枚举法(显示法)
叙述法(隐式法)
归纳法
递归指定集合法
文氏图解法
几个特殊集合
空集(绝对唯一)
全集(相对唯一)
无限集
等势
一一对应
两个有限集合等势当且仅当它们的元素个数相同;
可数集合可以和其可数的真子集等势.
可数集合
基数(阿列夫0)
∈阿列夫1(开区间(0,1)的基数)
不可数集合
既不是有限集
也不是可数集的集合
重要定义
集合A的元素个数: |A|(基数)
集族(Power Set)
集合作为元素构成
幂集
所有不同子集构成
⊕:对称差运算
补集
相对补集A-B(差集)
德摩根律
重要题型
数理逻辑
命题逻辑
联结词
┐
否定
∧
合取
∨
析取
异或
“P异或Q”称为P与Q的不可兼或
→
蕴涵
P称为蕴涵式的前件,Q称为蕴涵式的后件
若P,则Q
P仅当Q
只要P, 就Q
只有Q,才P
除非Q,才P
除非Q,否则非P
P是Q的充分条件
P→Q为假当且仅当P为真且Q为假
↔
等价
P当且仅当Q
优先级:否定→合取→析取→蕴涵→等价
命题公式分类
永真公式(重言式)
满足式(一定)
永假公式(矛盾式)
G在解释I下是真的:I满足G; G在解释I下是假的:I弄假于G.
公式G、H等价 ↔ 公式G↔H是永真公式
G = H 不是命题公式, G↔H是命题公式
范式
定义
命题变元或命题变元的否定称为文字
有限个文字的析取称为析取式(也称为子句)
有限个文字的合取称为合取式(也称为短语)
P与┐P称为互补对
包括单个
有限个短语的析取式称为析取范式
有限个子句的合取式称为合取范式
主析取范式
每一个短语都是极小项
必须且只能包含使得公式真值为真的那些解释对应的极小