【必备算法】动态规划:LeetCode题(十)343. 整数拆分,279. 完全平方数

343. 整数拆分²

给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。

示例 1:

输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。

示例 2:

输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

说明: 你可以假设 n 不小于 2 且不大于 58。

解法一:分治(超时)

分解模型(==>求所有约数(分解后的)最大乘积)。递推公式,f(n) = max(i*(n-i), i*f(n-i)) (i∈[0,n])

注:i*(n-i) 表示(n-i)不用分解的情况

class Solution {
    public int integerBreak(int n) {
        return work(n);
    }

    private int work(int n) {
        if (n == 1) return 1;

        int res = 1;
        for (int i = 1; i < n; i++) {
			// 只能有一个最值,所以res也要比较
            res = max(res, i * (n - i), i * work(n - i)); 
        }
        return res;
    }
	
	// 辅助函数,求三个数的最大值
    private int max(int x, int y, int z) {
        return Math.max(Math.max(x, y), z);
    }
}

解法二:记忆递归

class Solution {
    public int integerBreak(int n) {
        return work(n,new int[n + 1]);
    }

    private int work(int n, int[] memo) {
        if (n == 1) return 1;

        if (memo[n] == 0) {
            for (int i = 1; i < n; i++) 
            memo[n] = max(memo[n], i * (n - i), i * work(n - i, memo)); 
        }
        return memo[n];
    }

    private int max(int x, int y, int z) {
        return Math.max(Math.max(x, y), z);
    }
}

解法三:动态规划

  • 思路:
    • 状态数组:d[i]。分割出的 i 可拆分出的最大乘积
    • 初始状态:d(1) = 1。1 分割出的最大乘积就是 1
    • 状态方程:d(i) = max(d(1-i)* nums[i],d(i))。这里一定注意,别忘了不分割也可能是最大
    • 最终状态:d[n]
class Solution {
    public int integerBreak(int n) {
        int[] memo = new int[n + 1];
        memo[0] = 0;
        for (int i = 1; i <= n; i++) 
            for (int j = 1; j < i; j++) 
                memo[i] = max(memo[i], j * (i - j), j * memo[i - j]);
        return memo[n];
    }
    private int max(int x, int y, int z) {
        return Math.max(Math.max(x, y), z);
    }
}

不能将空间复杂度优化到O(1),因为每个状态在后面都可能用上

279. 完全平方数²

给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。

示例 1:

输入: n = 12
输出: 3 
解释: 12 = 4 + 4 + 4.

示例 2:

输入: n = 13
输出: 2
解释: 13 = 4 + 9.

解法:动态规划

  • 思路:分解模型&&重复子问题(==>求每个因数的可分解的最少完全平方数)
    • 状态数组: d[i]。数字 i 分解出的最少完全平方数
    • 初始状态:d[0]=0。0不能分解出完全平方数
    • 状态方程:d[i] = min(d[i - j*j]) + 1 (j*j<=i)。不断对数字i进行分解,取最小
    • 最终状态:d[n]
  • 复杂度:
    • Time:O(n ^ 3/2)
    • Space: O(n)
    public int numSquares(int n) {
        // 状态数组
        int[] d = new int[n + 1];

        // 初始状态
        d[0] = 0;

        // 状态递推
        for (int i = 1; i <= n; i++) {
            // 注:这里要先给d[i]最大值,不然d[i]=0
            d[i] = i;
            for (int j = 1; j*j <= i; j++) 
                d[i] = Math.min(d[i], d[i - j*j] + 1);
        } 
        
        // 最终状态:d[n]
        return d[n];
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

A minor

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值