343. 整数拆分²
给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
说明: 你可以假设 n 不小于 2 且不大于 58。
解法一:分治(超时)
分解模型(==>求所有约数(分解后的)最大乘积)。递推公式,f(n) = max(i*(n-i), i*f(n-i)) (i∈[0,n])
注:
i*(n-i)
表示(n-i)不用分解的情况
class Solution {
public int integerBreak(int n) {
return work(n);
}
private int work(int n) {
if (n == 1) return 1;
int res = 1;
for (int i = 1; i < n; i++) {
// 只能有一个最值,所以res也要比较
res = max(res, i * (n - i), i * work(n - i));
}
return res;
}
// 辅助函数,求三个数的最大值
private int max(int x, int y, int z) {
return Math.max(Math.max(x, y), z);
}
}
解法二:记忆递归
class Solution {
public int integerBreak(int n) {
return work(n,new int[n + 1]);
}
private int work(int n, int[] memo) {
if (n == 1) return 1;
if (memo[n] == 0) {
for (int i = 1; i < n; i++)
memo[n] = max(memo[n], i * (n - i), i * work(n - i, memo));
}
return memo[n];
}
private int max(int x, int y, int z) {
return Math.max(Math.max(x, y), z);
}
}
解法三:动态规划
- 思路:
- 状态数组:
d[i]
。分割出的 i 可拆分出的最大乘积 - 初始状态:
d(1) = 1
。1 分割出的最大乘积就是 1 - 状态方程:
d(i) = max(d(1-i)* nums[i],d(i))
。这里一定注意,别忘了不分割也可能是最大 - 最终状态:
d[n]
。
- 状态数组:
class Solution {
public int integerBreak(int n) {
int[] memo = new int[n + 1];
memo[0] = 0;
for (int i = 1; i <= n; i++)
for (int j = 1; j < i; j++)
memo[i] = max(memo[i], j * (i - j), j * memo[i - j]);
return memo[n];
}
private int max(int x, int y, int z) {
return Math.max(Math.max(x, y), z);
}
}
不能将空间复杂度优化到O(1),因为每个状态在后面都可能用上
279. 完全平方数²
给定正整数 n,找到若干个完全平方数(比如 1, 4, 9, 16, ...
)使得它们的和等于 n。你需要让组成和的完全平方数的个数最少。
示例 1:
输入: n = 12
输出: 3
解释: 12 = 4 + 4 + 4.
示例 2:
输入: n = 13
输出: 2
解释: 13 = 4 + 9.
解法:动态规划
- 思路:分解模型&&重复子问题(==>求每个因数的可分解的最少完全平方数)
- 状态数组:
d[i]
。数字 i 分解出的最少完全平方数 - 初始状态:
d[0]=0
。0不能分解出完全平方数 - 状态方程:
d[i] = min(d[i - j*j]) + 1 (j*j<=i)
。不断对数字i进行分解,取最小 - 最终状态:
d[n]
。
- 状态数组:
- 复杂度:
- Time:O(n ^ 3/2)
- Space: O(n)
public int numSquares(int n) {
// 状态数组
int[] d = new int[n + 1];
// 初始状态
d[0] = 0;
// 状态递推
for (int i = 1; i <= n; i++) {
// 注:这里要先给d[i]最大值,不然d[i]=0
d[i] = i;
for (int j = 1; j*j <= i; j++)
d[i] = Math.min(d[i], d[i - j*j] + 1);
}
// 最终状态:d[n]
return d[n];
}