矩阵快速幂技巧练习(一)— 经典牛问题

上一篇文章简单介绍了斐波那契数列的矩阵乘法,并做了一个小推广,这篇文章来小试牛刀,做一个经典的练习题。
求斐波那契数列矩阵乘法的方法

题目
第一年农场有一只成熟的母牛A,往后的每年:

  1. 每一只成熟的母牛都会生一只母牛
  2. 每一只新出生的母牛都会在第三年成熟。
  3. 每一只母牛都不会死。

求n年后牛的数量。


先来看一下农场前6年牛的变化。
在这里插入图片描述解释一下,第一年只有牛A。
第二年牛A生了牛B。
第三年牛A生了牛C,因为牛B还不成熟,所以只能A生。
第四年依然是牛A生了牛D。
第五年,此时牛B也已经成熟,并且牛不会死,所以牛A继续生牛E,牛B生牛F。
第六年,前几年的牛继续保留,此时C也成熟可以生小牛,所以ABC分别生3只小牛。

根据题意可推导出:新的一年中,我每年都要保留前一年的所有牛,并且3年前的牛已经成熟可以生新的小牛,所以3年前有多少头牛,就生多少头牛。
所以: F ( n ) = F ( n − 1 ) + F ( n − 3 ) F(n) = F(n - 1) + F(n - 3) F(n)=F(n1)+F(n3)


根据上面公式可以看出它是一个3阶的递推式,所以下面的式子它一定满足:

∣ F 4 , F 3 , F 2 ∣ = ∣ F 3 , F 2 , F 1 ∣ × ∣ a b c d e f g h i ∣ |F_4,F_3,F_2| = |F_3,F_2,F_1| \times\left| \begin{matrix} a & b & c\\ d & e & f \\ g & h & i \end{matrix} \right| F4,F3,F2=F3,F2,F1× adgbehcfi

∣ F 5 , F 4 , F 3 ∣ = ∣ F 4 , F 3 , F 2 ∣ × ∣ a b c d e f g h i ∣ |F_5,F_4,F_3| = |F_4,F_3,F_2| \times\left| \begin{matrix} a & b & c\\ d & e & f \\ g & h & i \end{matrix} \right| F5,F4,F3=F4,F3,F2× adgbehcfi
∣ F n , F n − 1 , F n − 2 ∣ = ∣ F 3 , F 2 , F 1 ∣ × ∣ a b c d e f g h i ∣ n − 3 |F_n,F_{n-1},F_{n-2}| = |F_3,F_2,F_1| \times\left| \begin{matrix} a & b & c\\ d & e & f \\ g & h & i \end{matrix} \right|^{n-3} Fn,Fn1,Fn2=F3,F2,F1× adgbehcfi n3

所以我们只要先根据给定的初始值,来求出固定的 3 * 3矩阵,再将n- 2次方带入。就能够求出来Fn的值。


初始值我们知道 F(1) = 1,F(2) = 2,F(3) = 3,F(4) = 4,F(5) = 6,F(6) = 9,如果初始值不够求出矩阵,那就根据公式 F ( n ) = F ( n − 1 ) + F ( n − 3 ) F(n) = F(n - 1) + F(n - 3) F(n)=F(n1)+F(n3)继续带入,获取更多值的信息。

∣ F 4 , F 3 , F 2 ∣ = ∣ F 3 , F 2 , F 1 ∣ × ∣ a b c d e f g h i ∣ − > ∣ 4 , 3 , 2 ∣ = ∣ 3 , 2 , 1 ∣ × ∣ a b c d e f g h i ∣ |F_4,F_3,F_2| = |F_3,F_2,F_1| \times\left| \begin{matrix} a & b & c\\ d & e & f \\ g & h & i \end{matrix} \right| ->|4,3,2| = |3,2,1| \times\left| \begin{matrix} a & b & c\\ d & e & f \\ g & h & i \end{matrix} \right| F4,F3,F2=F3,F2,F1× adgbehcfi >∣4,3,2∣=∣3,2,1∣× adgbehcfi
继续带入
{ 3 a + 2 d + g = 4 3 b + 2 e + h = 3 3 c + 2 f + i = 2 (1) \begin{cases} 3a + 2d + g = 4 \\ 3b + 2e + h= 3\\ 3c + 2f + i = 2 \end{cases} \tag{1} 3a+2d+g=43b+2e+h=33c+2f+i=2(1)
一个式子求不出来,在带入其他式子
∣ F 5 , F 4 , F 3 ∣ = ∣ F 4 , F 3 , F 2 ∣ × ∣ a b c d e f g h i ∣ − > ∣ 6 , 4 , 3 ∣ = ∣ 4 , 3 , 2 ∣ × ∣ a b c d e f g h i ∣ |F_5,F_4,F_3| = |F_4,F_3,F_2| \times\left| \begin{matrix} a & b & c\\ d & e & f \\ g & h & i \end{matrix} \right| ->|6,4,3| = |4,3,2| \times\left| \begin{matrix} a & b & c\\ d & e & f \\ g & h & i \end{matrix} \right| F5,F4,F3=F4,F3,F2× adgbehcfi >∣6,4,3∣=∣4,3,2∣× adgbehcfi
{ 4 a + 3 d + 2 g = 6 4 b + 3 e + 2 h = 4 4 c + 3 f + 2 i = 3 (2) \begin{cases} 4a + 3d + 2g = 6 \\ 4b + 3e + 2h= 4\\ 4c + 3f + 2i = 3 \end{cases} \tag{2} 4a+3d+2g=64b+3e+2h=44c+3f+2i=3(2)
以此类推,不一一列举,最后求出来矩阵的值为:
∣ 1 1 0 1 0 1 0 0 1 ∣ \left| \begin{matrix} 1 & 1 & 0 \\ 1 & 0 & 1\\ 0 & 0 & 1 \end{matrix} \right| 110100011


接下来求矩阵的n - 2次方的值。

代码

public static int c1(int n){
        if(n < 1){
            return 0;
        }

        if (n == 1 || n == 2 || n == 3){
            return n;
        }
        int[][] base = {{1,1,0},
                        {1,0,1},
                        {0,0,1}};

        int[][] res = matrixPower(base,n - 3);
        return 3 * res[0][0] + 2 * res[1][0] + res[2][0];
    }
    
public static int[][] matrixPower(int[][] m, int p) {
        int[][] res = new int[m.length][m[0].length];
        for (int i = 0; i < res.length; i++) {
            res[i][i] = 1;
        }
        // res = 矩阵中的1
        int[][] t = m;// 矩阵1次方
        for (; p != 0; p >>= 1) {
            if ((p & 1) != 0) {
                res = product(res, t);
            }
            t = product(t, t);
        }
        return res;
    }

    // 两个矩阵乘完之后的结果返回
    public static int[][] product(int[][] a, int[][] b) {
        int n = a.length;
        int m = b[0].length;
        int k = a[0].length; // a的列数同时也是b的行数
        int[][] ans = new int[n][m];
        for(int i = 0 ; i < n; i++) {
            for(int j = 0 ; j < m;j++) {
                for(int c = 0; c < k; c++) {
                    ans[i][j] += a[i][c] * b[c][j];
                }
            }
        }
        return ans;
    }
  • 18
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 下面是用 C 语言实现矩阵快速幂的代码: ```c #include <stdio.h> #include <stdlib.h> #define MAXN 10 typedef struct matrix { int m[MAXN][MAXN]; } Matrix; Matrix mul(Matrix a, Matrix b, int n) { Matrix c; int i, j, k; for (i = 0; i < n; ++i) { for (j = 0; j < n; ++j) { c.m[i][j] = 0; for (k = 0; k < n; ++k) { c.m[i][j] += a.m[i][k] * b.m[k][j]; } } } return c; } Matrix pow(Matrix a, int n, int k) { Matrix res; int i, j; for (i = 0; i < n; ++i) { for (j = 0; j < n; ++j) { res.m[i][j] = (i == j) ? k : 0; } } while (n > 0) { if (n & 1) { res = mul(res, a, k); } a = mul(a, a, k); n >>= 1; } return res; } int main() { int n, k, i, j; Matrix a; printf("请输入矩阵的大小n和幂次k:"); scanf("%d%d", &n, &k); printf("请输入矩阵A:\n"); for (i = 0; i < n; ++i) { for (j = 0; j < n; ++j) { scanf("%d", &a.m[i][j]); } } Matrix res = pow(a, k, n); printf("矩阵A的%d次幂为:\n", k); for (i = 0; i < n; ++i) { for (j = 0; j < n; ++j) { printf("%d ", res.m[i][j]); } printf("\n"); } return 0; } ``` 该代码中,`Matrix` 结构体表示一个矩阵,`mul()` 函数实现了矩阵的乘法,`pow()` 函数实现了矩阵的快速幂。在 `main()` 函数中,先输入矩阵的大小和幂次,然后输入矩阵 A,最后输出 A 的 k 次幂。 ### 回答2: 矩阵快速幂是一种快速计算矩阵乘法的方法,可以在 O(log n) 的时间复杂度内计算一个矩阵的 n 次方。下面是用 C 语言编写一个矩阵快速幂的代码示例: ```c #include <stdio.h> #define N 2 // 矩阵的大小 // 矩阵乘法 void multiplyMatrix(int a[N][N], int b[N][N], int result[N][N]) { int i, j, k; int temp[N][N]; for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { temp[i][j] = 0; for (k = 0; k < N; k++) { temp[i][j] += a[i][k] * b[k][j]; } } } // 将结果复制到 result 矩阵中 for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { result[i][j] = temp[i][j]; } } } // 矩阵快速幂 void matrixPower(int base[N][N], int exponent, int result[N][N]) { int i; int temp[N][N]; // 初始化结果矩阵为单位矩阵 for (i = 0; i < N; i++) { for (int j = 0; j < N; j++) { if (i == j) { result[i][j] = 1; } else { result[i][j] = 0; } } } while (exponent > 0) { if (exponent % 2 == 1) { multiplyMatrix(result, base, temp); // 将结果复制到 result 矩阵中 for (i = 0; i < N; i++) { for (int j = 0; j < N; j++) { result[i][j] = temp[i][j]; } } } multiplyMatrix(base, base, temp); // 将结果复制到 base 矩阵中 for (i = 0; i < N; i++) { for (int j = 0; j < N; j++) { base[i][j] = temp[i][j]; } } exponent /= 2; } } // 打印矩阵 void printMatrix(int matrix[N][N]) { int i, j; for (i = 0; i < N; i++) { for (j = 0; j < N; j++) { printf("%d ", matrix[i][j]); } printf("\n"); } } int main() { int base[N][N] = {{1, 1}, {1, 0}}; int exponent = 5; int result[N][N]; matrixPower(base, exponent, result); printMatrix(result); return 0; } ``` 以上代码演示了如何使用 C 语言编写一个矩阵快速幂的程序。程序中先定义了一个矩阵乘法函数 `multiplyMatrix`,用于计算两个矩阵相乘的结果。然后实现了矩阵快速幂函数 `matrixPower`,用于计算一个矩阵的指数次方。最后在 `main` 函数中使用示例矩阵和指数调用 `matrixPower` 函数,并通过 `printMatrix` 函数打印结果。 ### 回答3: 矩阵快速幂是指将一个矩阵求幂的运算使用快速幂算法进行优化,以提高计算的效率。下面是用C语言编写的一个矩阵快速幂算法的示例代码: ```c #include <stdio.h> // 定义矩阵的最大维度 #define MAX_SIZE 10 // 矩阵相乘函数 void matrix_multiply(int n, int a[][MAX_SIZE], int b[][MAX_SIZE], int c[][MAX_SIZE]) { int i, j, k; for(i=0; i<n; i++) { for(j=0; j<n; j++) { c[i][j] = 0; for(k=0; k<n; k++) { c[i][j] += a[i][k] * b[k][j]; } } } } // 矩阵快速幂函数 void matrix_power(int n, int a[][MAX_SIZE], int m, int b[][MAX_SIZE]) { int i, j; // 初始化结果矩阵为单位矩阵 for(i=0; i<n; i++) { for(j=0; j<n; j++) { if(i == j) { b[i][j] = 1; } else { b[i][j] = 0; } } } // 进行快速幂运算 while(m > 0) { if(m % 2 == 1) { int c[MAX_SIZE][MAX_SIZE]; matrix_multiply(n, b, a, c); for(i=0; i<n; i++) { for(j=0; j<n; j++) { b[i][j] = c[i][j]; } } } int c[MAX_SIZE][MAX_SIZE]; matrix_multiply(n, a, a, c); for(i=0; i<n; i++) { for(j=0; j<n; j++) { a[i][j] = c[i][j]; } } m = m / 2; } } int main() { int n = 3; // 矩阵维度 int a[MAX_SIZE][MAX_SIZE] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}; // 输入矩阵 int m = 3; // 幂指数 int b[MAX_SIZE][MAX_SIZE]; // 结果矩阵 matrix_power(n, a, m, b); // 输出结果矩阵 int i, j; for(i=0; i<n; i++) { for(j=0; j<n; j++) { printf("%d ", b[i][j]); } printf("\n"); } return 0; } ``` 以上代码实现了一个矩阵快速幂算法,其中`matrix_multiply`函数用于计算两个矩阵的乘积,`matrix_power`函数用于进行矩阵的快速幂运算。在`main`函数中,我们可以自定义输入矩阵维度、矩阵内容以及幂指数,并输出矩阵求幂的结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值