常用机器学习评价指标
评价标准:
IOU (Intersection over Union,重叠度)
首先引入四个概念:
P(Positive)和N(Negative) 代表模型的判断结果
T(True)和F(False) 评价模型的判断结果是否正确
TP:表示正确划分为正例的样本;
FP:表示错误划分为正例的样本;
TN:表示正确划分为负例的样本;
FN:表示错误划分为负例的样本。
上图中红色框表示GroundTruth图,蓝色框表示模型的预测结果。
重叠度计算公式如下:
精确率:
(针对模型判断出的所有正例(TP+FP)而
原创
2020-09-25 14:57:13 ·
207 阅读 ·
0 评论