剑指 Offer II 060. 出现频率最高的 k 个数字
给定一个整数数组 nums 和一个整数 k ,请返回其中出现频率前 k 高的元素。可以按 任意顺序 返回答案。
示例 1:
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
示例 2:
输入: nums = [1], k = 1
输出: [1]
提示:
1 <= nums.length <= 105
k 的取值范围是 [1, 数组中不相同的元素的个数]
题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的
进阶:所设计算法的时间复杂度 必须 优于 O(n log n) ,其中 n 是数组大小。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/g5c51o
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
分析
看到排序首先想到堆,看到出现次数会想到哈希表,这道题利用哈希表和堆组合解决。
难点在于,堆的排列和堆中元素类型选择,这里选择在堆中存储哈希表的entry值,排列毋庸置疑按照哈希表的value进行排序。哈希表第一个元素存储数字,第二个元素存储数字出现次数。
借此题再复习一下优先队列的排列方法、以及哈希表的键值对遍历方法。
题解(Java)
class Solution {
public int[] topKFrequent(int[] nums, int k) {
Map<Integer, Integer> map = new HashMap<>();
Queue<Map.Entry<Integer, Integer>> minHeap = new PriorityQueue<>((e1, e2) -> e1.getValue() - e2.getValue());
for (int num : nums) {
map.put(num, map.getOrDefault(num, 0) + 1);
}
for (Map.Entry<Integer, Integer> entry : map.entrySet()) {
if (minHeap.size() < k) {
minHeap.offer(entry);
} else {
if (entry.getValue() > minHeap.peek().getValue()) {
minHeap.poll();
minHeap.offer(entry);
}
}
}
int[] ans = new int[minHeap.size()];
int i = 0;
for (Map.Entry<Integer, Integer> entry : minHeap) ans[i++] = entry.getKey();
return ans;
}
}