剑指 Offer II 099. 最小路径之和
给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:一个机器人每次只能向下或者向右移动一步。
示例 1:
输入:grid = [[1,3,1],[1,5,1],[4,2,1]]
输出:7
解释:因为路径 1→3→1→1→1 的总和最小。
示例 2:
输入:grid = [[1,2,3],[4,5,6]]
输出:12
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 200
0 <= grid[i][j] <= 100
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/0i0mDW
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
分析
方法一:空间复杂度O(mn)
1、找状态转移方程。设f(i, j)表示坐标(i, j)处的最小路径和,则f(i, j) = min(f(i - 1, j), f(i, j -1)) + grid[i][j],对于 i 或 j 等于0的情况,f(0, 0) = grid[0][0],当i = 0,f(0, j) = f(0, j - 1) + grid[0][j],当j = 0,f(i, 0) = f(i - 1, 0) + grid[i][0]。
2、根据状态转移方程获得dp数组。
方法二:空间复杂度O(n)
对于求f(i, j)用到了f(i - 1, j), f(i, j -1),可以进行降维。
题解(Java)
方法一:空间复杂度O(mn)
class Solution {
public int minPathSum(int[][] grid) {
int[][] dp = new int[grid.length][grid[0].length];
dp[0][0] = grid[0][0];
for (int j = 1; j < grid[0].length; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
for (int i = 1; i < grid.length; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
for (int j = 1; j < grid[0].length; j++) {
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[grid.length - 1][grid[0].length - 1];
}
}
方法二:空间复杂度O(n)
class Solution {
public int minPathSum(int[][] grid) {
int[] dp = new int[grid[0].length];
dp[0] = grid[0][0];
for (int j = 1; j < grid[0].length; j++) {
dp[j] = dp[j - 1] + grid[0][j];
}
for (int i = 1; i < grid.length; i++) {
dp[0] += grid[i][0];
for (int j = 1; j < grid[0].length; j++) {
dp[j] = Math.min(dp[j], dp[j - 1]) + grid[i][j];
}
}
return dp[grid[0].length - 1];
}
}