剑指 Offer II 104. 排列的数目
给定一个由 不同 正整数组成的数组 nums ,和一个目标整数 target 。请从 nums 中找出并返回总和为 target 的元素组合的个数。数组中的数字可以在一次排列中出现任意次,但是顺序不同的序列被视作不同的组合。
题目数据保证答案符合 32 位整数范围。
示例 1:
输入:nums = [1,2,3], target = 4
输出:7
解释:
所有可能的组合为:
(1, 1, 1, 1)
(1, 1, 2)
(1, 2, 1)
(1, 3)
(2, 1, 1)
(2, 2)
(3, 1)
请注意,顺序不同的序列被视作不同的组合。
示例 2:
输入:nums = [9], target = 3
输出:0
提示:
1 <= nums.length <= 200
1 <= nums[i] <= 1000
nums 中的所有元素 互不相同
1 <= target <= 1000
进阶:如果给定的数组中含有负数会发生什么?问题会产生何种变化?如果允许负数出现,需要向题目中添加哪些限制条件?
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/D0F0SV
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
分析
本题与上题类似,参考上题的方法二。
用f(i)表示和为 i 的排列的数目,为了得到和为 i 的排列,可以在和为 i - nums[n - 1] 的排列中添加标号为n - 1的数字,f(i)为把所有情况全部累加起来 f(i) = Σf(i - nums[j])(nums[j] <= i)。由于只有一个空排列的数字之和等于0,所以f(0) = 1。
题解(Java)
class Solution {
public int combinationSum4(int[] nums, int target) {
int[] dp = new int[target + 1];
dp[0] = 1;
for (int i = 1; i <= target; i++) {
for (int num : nums) {
if (i >= num) {
dp[i] += dp[i - num];
}
}
}
return dp[target];
}
}