剑指 Offer II 103. 最少的硬币数目
给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11
输出:3
解释:11 = 5 + 5 + 1
示例 2:
输入:coins = [2], amount = 3
输出:-1
示例 3:
输入:coins = [1], amount = 0
输出:0
示例 4:
输入:coins = [1], amount = 1
输出:1
示例 5:
输入:coins = [1], amount = 2
输出:2
提示:
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/gaM7Ch
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
分析
方法一:时间复杂度O(ntk),空间复杂度O(t)
n为数组长度,t为目标和,k为在某个 t 的情况下最多可使用标号为 i 的硬币的数目。
1、找状态转移方程。不同于前面几题的是,本题的物品是可重复选取的,那么在计算f(i, j)的时候,需要对标号为i - 1的硬币的使用个数0 - k分别进行判断,找出整体使用硬币数量最少的答案,我们直接使用一维的dp数组,dp[j]表示的就是使用个数为0时的总硬币使用个数,dp[j]的计算公式为:
dp[j] = Math.min(dp[j], dp[j - k * coin] + k)
2、根据状态转移方程获得dp数组。只需要注意循环的方向和边界条件即可。
方法二:时间复杂度O(nt),空间复杂度O(t)
1、寻找状态转移方程。另外一种思路是,用f(i)表示凑出总额为 i 的硬币需要的最少数目,为了凑出总额为 i 的硬币,有如下选择:在总额为i - coins[0]的硬币中添加 1 枚标号为 0 的硬币,此时 f(i) = f(i - coins[0]) + 1,在总额为i - coins[1]的硬币中添加 1 枚标号为 1 的硬币,此时 f(i) = f(i - coins[1]) + 1,以此类推,在总额为i - coins[n- 1]的硬币中添加 1 枚标号为 n - 1 的硬币,此时 f(i) = f(i - coins[n - 1]) + 1,此时的状态转移方程为f(i) = min(f(i - coins[j]) + 1)(coins[j] <= i),显然f(0) = 0。
2、根据状态转移方程获得dp数组。这个思路本来就是一维的,所以dp数组是一维的,并且只需要双重循环即可。