【16.56%】【codeforces 687B】Remainders Game

time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
Today Pari and Arya are playing a game called Remainders.

Pari chooses two positive integer x and k, and tells Arya k but not x. Arya have to find the value 这里写图片描述 . There are n ancient numbers c1, c2, …, cn and Pari has to tell Arya 这里写图片描述 if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value 这里写图片描述 for any positive integer x?

Note, that 这里写图片描述means the remainder of x after dividing it by y.

Input
The first line of the input contains two integers n and k (1 ≤ n,  k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.

The second line contains n integers c1, c2, …, cn (1 ≤ ci ≤ 1 000 000).

Output
Print “Yes” (without quotes) if Arya has a winning strategy independent of value of x, or “No” (without quotes) otherwise.

Examples
input
4 5
2 3 5 12
output
Yes
input
2 7
2 3
output
No
Note
In the first sample, Arya can understand 这里写图片描述 because 5 is one of the ancient numbers.

In the second sample, Arya can’t be sure what 这里写图片描述 is. For example 1 and 7 have the same remainders after dividing by 2 and 3, but they differ in remainders after dividing by 7.

【题解】

题意:
让你猜x % k 的值
但是只告诉你k以及一系列x % ci;
做法:
根据中国剩余定理:
如果知道了
x % a;
x % b;
x % c;
x % d;
····
且a,b,c,d互质;
那么x % (abcd)就可以确定了;
那么因为要求x % k
所以对k进行质数分解;
各个质数肯定是互质的;
分解成k = p1^k1*p2^k2…pn^kn的形式
然后你还得知道这么一个东西
如果
a 是 b的倍数,即a %b==0
那么
x % a = y1
x % b = y2
那么y2 = y1 % b;

x = t1*a+ y1 ···①
x = t2*b + y2
因为a是b的倍数
所以①式总可以写成
x = t1*t3*b + y1的形式
显然y1 再对b取模就是y2了;
回到质数分解后
分解成k = p1^k1*p2^k2…pn^kn的形式
我们想知道
x % p1^k1
x % p2^k2
….
x % pn^kn
这样我们就能知道x %k了
根据上面的分析,我们只要在所给的ci里面找pi^ki的倍数就好了;
如果对于所有的t∈[1..n]总有数字ci是pt^kt的倍数;
因为如果ci是pt^kt的倍数,则x % ci知道了,相应的x%(pt^kt)按照上面的分析也能知道了->(x%ci) % (pt^kt)
既然知道了所有的x%pt^kt
那么就能求出x%k了;

#include <cstdio>

int n, k,cnt = 0;
int num[10000];
bool cover[10000] = { 0 };

int main()
{
    //freopen("F:\\rush.txt", "r", stdin);
    scanf("%d%d", &n, &k);
    for (int i = 2;i <= k;i++)
        if ((k%i) == 0)
        {
            int now = 1;
            while ((k%i) == 0)
            {
                now = now*i;
                k /= i;
            }
            num[++cnt] = now;//存的是p1^k1..pcnt^kcnt
        }
    for (int i = 1; i <= n; i++)
    {
        int x;
        scanf("%d", &x);
        for (int j = 1; j <= cnt; j++)
            if (x % num[j] == 0)//如果是的x%pt^kt倍数,那么x%pt^kt就能求出来了
                cover[j] = true;
    }
    for (int j = 1;j <= cnt;j++)
        if (!cover[j])
        {
            puts("NO");
            return 0;
        }
    puts("YES");
    return 0;
}
技术选型 【后端】:Java 【框架】:springboot 【前端】:vue 【JDK版本】:JDK1.8 【服务器】:tomcat7+ 【数据库】:mysql 5.7+ 项目包含前后台完整源码。 项目都经过严格调试,确保可以运行! 具体项目介绍可查看博主文章或私聊获取 助力学习实践,提升编程技能,快来获取这份宝贵的资源吧! 在当今快速发展的信息技术领域,技术选型是决定一个项目成功与否的重要因素之一。基于以下的技术栈,我们为您带来了一份完善且经过实践验证的项目资源,让您在学习和提升编程技能的道路上事半功倍。以下是该项目的技术选型和其组件的详细介绍。 在后端技术方面,我们选择了Java作为编程语言。Java以其稳健性、跨平台性和丰富的库支持,在企业级应用中处于领导地位。项目采用了流行的Spring Boot框架,这个框架以简化Java企业级开发而闻名。Spring Boot提供了简洁的配置方式、内置的嵌入式服务器支持以及强大的生态系统,使开发者能够更高效地构建和部署应用。 前端技术方面,我们使用了Vue.js,这是一个用于构建用户界面的渐进式JavaScript框架。Vue以其易上手、灵活和性能出色而受到开发者的青睐,它的组件化开发思想也有助于提高代码的复用性和可维护性。 项目的编译和运行环境选择了JDK 1.8。尽管Java已经推出了更新的版本,但JDK 1.8依旧是一种成熟且稳定的选择,广泛应用于各类项目中,确保了兼容性和稳定性。 在服务器方面,本项目部署在Tomcat 7+之上。Tomcat是Apache软件基金会下的一个开源Servlet容器,也是应用最为广泛的Java Web服务器之一。其稳定性和可靠的性能表现为Java Web应用提供了坚实的支持。 数据库方面,我们采用了MySQL 5.7+。MySQL是一种高效、可靠且使用广泛的关系型数据库管理系统,5.7版本在性能和功能上都有显著的提升。 值得一提的是,该项目包含了前后台的完整源码,并经过严格调试,确保可以顺利运行。通过项目的学习和实践,您将能更好地掌握从后端到前端的完整开发流程,提升自己的编程技能。欢迎参考博主的详细文章或私信获取更多信息,利用这一宝贵资源来推进您的技术成长之路!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值