【3002】删去K个数字

Time Limit: 3 second
Memory Limit: 2 MB

【问题描述】

     输入一个数字串S和整数K(K小于数字串S的长度),从S中删去K个数字,使剩余数字在保持相对位置不变的情况下构成一个值最小的整数。例如:S='19990608',K=4,处理结果为608。如果串S含有非数字字符,则输出'error',如果K的值大于串S的长度,则输出'error'。

【输入】

    两行,第一行为数字串S,第二行为整数K。

【输出】

    一行,处理结果或error

【输入样例】

    19990608
    4

【输出样例】

    608

 

【题解】

这是一道贪心题。

先考虑一种比较简单的情况。

123456,接下来 删除一个数字。

如果删掉1 就是2 开头了

这显然不是最小的,因为我们可以删掉2,那这个数字就是1开头的了,但删掉2第二位是3,如果删掉3 第二位就是2 这样更优。。。

如此如此可以知道 删掉6是最优的情况。

再来复杂点

489456 这里就不能单纯地删掉6了。我们可以把它分成两个部分

489 和 456 如果单纯対这两个数做删除操作 我们可以容易地得到答案。

那么问题来了,我们应该删掉9还是删掉6呢?

答案是9,因为如果我们让后者更小,最后结果是489XXX

而如果让前者更小,最后结果则是484XXX,显然让前者更小是更优的解法。

或者你可以把这489和456看成X和Y,然后把这两个数组成一个2位数

最后的结果是X*10+Y,那让X更小显然是更优的解。

如果是484950这个 就把 48 和49 和50 看成X,Y,Z显然也是让X最小是最优的解。

就是这样吧。

这里的9和6是两个递增区间的最后一个数字。

while (a[i] <= a[i+1]) i ++ ,这样找到i,然后用erase删掉就好。

不要忘记去除开头可能多余的0;

【代码】

#include <cstdio>
#include <string>
#include <iostream>
#include <stdlib.h>

using namespace std;
string s1;
int n,k;

void s_p()
{
    printf("error");
    exit(0);
}

void input_data()
{
    cin >> s1;
    n = s1.size();
    scanf("%d",&k);
    if (k > n) //如果输入的K不符合要求,则判错
        s_p();
    if (k == n) //
        {
            printf("0");
            exit(0);
        }
}

void get_ans()
{
    for (int i = 0;i < n;i++)
        if (s1[i] < '0' || s1[i] > '9') //如果有非法字符 也判错
            s_p();
    for (int i = 1;i <= k;i++) //删除k个数字
        {
            int j = 0;
            while (s1[j] <= s1[j+1]) j++; //找到第一个递增区间的最后一个数字
            s1 = s1.erase(j,1); //删掉这个数字。
        }
    int m = s1.size();
    int i = 0;
    while (m > 1 && s1[i] == '0') //删掉开头多余的0
        {
            s1 = s1.erase(0,1);
            m--;
        }

}

void output_ans()
{
    cout << s1 << endl;
}

int main()
{
    input_data();
    get_ans();
    output_ans();
    return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值