CodeForces - 540D (概率dp)

题目来源:click
给定了一定数量的石头,剪刀,布,数量分别为r,s,p,石头杀死剪刀,剪刀杀死布,布杀死石头。
问最后一个阵营胜利的概率是多少。
dp[i][j][k] : 表示还有i个石头j个剪刀k个布的概率。
可以直接找出概率的转移方程,由于有多个状态可以转移到dp[i][j][k],所以是加法,具体见代码。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<cstdlib>
#include<istream>
#include<vector>
#include<stack>
#include<map>
#include<algorithm>
#include<queue>
#define MAX_len 50100*4
using namespace std;
typedef long long ll;
double dp[102][102][102];// i个r j个s k个p
int main()
{
    memset(dp,0,sizeof(dp));
    int r,s,p;
    scanf("%d %d %d",&r,&s,&p);
    int i,j,k;
    dp[r][s][p]=1.0;
    for(i=r;i>=1;i--)//注意循环里不要到0,到0的话就已经到出现结果了。
    {
        for(j=s;j>=1;j--)
        {
            for(k=p;k>=1;k--)
            {
                int sum=i*j+i*k+j*k;
                if(sum==0)
                    break;
                if(i&&k)
                dp[i-1][j][k]+=dp[i][j][k]*(double(i*k*1.0)/double(sum*1.0));
                if(i&&j)
                dp[i][j-1][k]+=dp[i][j][k]*(double(i*j*1.0)/double(sum*1.0));
                if(j&&k)
                dp[i][j][k-1]+=dp[i][j][k]*(double(k*j*1.0)/double(sum*1.0));
            }
        }
    }
    double ans1=0.0,ans2=0.0,ans3=0.0;
    for(i=1;i<=100;i++)
    {
        for(j=0;j<=100;j++)
        {
            ans1+=dp[i][j][0];
            ans2+=dp[0][i][j];
            ans3+=dp[j][0][i];
        }
    }
    printf("%.9lf %.9lf %.9lf",ans1,ans2,ans3);
    return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值