lucas定理 与 扩展lucas定理(HDU 3037 以及 2015 ICL, Finals, Div. 1 J.Ceizenpok’s formula)

之前时不时的学一点,属实浮躁,总结一下。
Lucas定理是用来求 c(n,m) mod p,p为素数的值。
表达式C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p 。
时间复杂度: l o g p n ∗ p log_p n * p logpnp
推导:采用的是构造证明,有错误还请指出。
在这里插入图片描述举个栗子:
题目:HDU 3037
题意:n个不同的树中保存不超过m个物品(它们是相同的)总共有多少种方法。
比方说2棵树一个物品,有三种方法,不放,一个放树1,或者一个放树2。
由于n,m的值非常大,不可能n^2递推,由于m个物品是相同的,我们从m个为m个物品入手,将他们分堆,本质是x1+x2+…+xn=m,可以先分 C m − 1 i C_{m-1}^i Cm1i即i+1份正整数解,需要放到n个不同的树中,即 C n i + 1 C_n^{i+1} Cni+1种情况,之后作累加,但有可能只存放一个物品,或者两个…,所以总式子是 ∑ j = 1 m ∑ i = 1 j C j − 1 i − 1 C n i + 1 \sum_{j=1}^m\sum_{i=1}^jC_{j-1}^{i-1}C_{n}^i+1 j=1mi=1jCj1i1Cni+1。如果计算复杂度将上升到 O ( n 2 ) O(n^2) O(n2),显然不行。考虑本来就是求x1+x2+…+xn=m解得个数,这个式子是非负整数解,那么构造设yi=xi+1,y1+y2+…+yn=n+m,即求他的正整数解,即 C n + m − 1 n − 1 C_{n+m-1}^{n-1} Cn+m1n1,n-1就是分为n份,最终也就是 ∑ i = 0 m C n + i − 1 n − 1 \sum_{i=0}^mC_{n+i-1}^{n-1} i=0mCn+i1n1,又因为C(n,m)=C(n-1,m-1)+C(n-1,m)[定义推导即可证明], ∑ i = 0 m C n + i − 1 n − 1 = C n + m m \sum_{i=0}^mC_{n+i-1}^{n-1}=C_{n+m}^m i=0mCn+i1n1=Cn+mm,又由于n,m得范围很大,p是质数,借用上述卢卡斯定理递归解决,中间带入了费马小定理(由欧拉定理推导而来(欧拉定理由最小正简化剩余来证明))。

#include<cmath>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cstdlib>
#include<istream>
#include<vector>
#include<stack>
#include<set>
#include<map>
#include<algorithm>
#include<queue>
#define inf 0x3f3f3f3f
#define llinf 0x3f3f3f3f3f3f3f3f
#define MAX_len 50100*4
using namespace std;
typedef long long ll;
const int mod=998244353;
ll quickpow(ll a,ll n,ll p)
{
    ll res=1;
    while(n)
    {
        if(n&1)
        {
            res=(res*a)%p;
        }
        n>>=1;
        a=(a*a)%p;
    }
    return res;
}
ll comb(ll a,ll b,ll p)
{
    if(a<b)
        return 0;
    if(a==b)
        return 1;
    ll i,j,k,sum1=1,sum2=1;
    if(2*b>a)
        b=a-b;
    for(i=0;i<b;i++)
    {
        sum1=(sum1*(a-i))%p;
        sum2=(sum2*(b-i))%p;
    }
    ll temp=(sum1*quickpow(sum2,p-2,p))%p;
    return temp;
}
ll lucas(ll n,ll m,ll p)
{
    ll ans=1;
    if(m==0)
        return 1;
    while(n&&m)
    {
        ans=(ans*comb(n%p,m%p,p))%p;
        n/=p;
        m/=p;
    }
    return ans;
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        ll n,m,p;
        scanf("%lld %lld %lld",&n,&m,&p);
        printf("%lld\n",lucas(n+m,m,p));
    }
    return 0;
}

扩展Lucas定理:当p不是素数的时候怎么办,如上的证明过程由于 C p i ( m o d p ) = 0 C_p^i(mod p)=0 Cpi(modp)=0由于p是质数的关系利用费马小定理必是0,得到 1 + x p 1+x^p 1+xp,但p不是质数时取模过程不一定是0,中途求解此式子需要利用扩展欧几里德求逆元,还需要互质的前提条件。思路及那个p分解为 ∏ i p i k i \prod_ip_i^{k_i} ipiki,pi都为质数,做唯一分解,用中国剩余定理合并。
现在需要取解决 C n m ( m o d C_n^m(mod Cnm(mod a i ) a_i) ai), a i = p i k i ai=p_i^{k_i} ai=piki。我们先对n!做操作,举个栗子:n=19,pi=3,ki=2。
n ! = ( 3 ∗ 6 ∗ 9 ∗ 12 ∗ 15 ∗ 18 ) ∗ ( 1 ∗ 2 ∗ 4 ∗ 5 ∗ 7 ∗ 8 ) ∗ ( 10 ∗ 11 ∗ 13 ∗ 14 ∗ 17 ) ∗ 19 = ( 3 6 ∗ 6 ! ) ∗ ( 1 ∗ 2 ∗ 4 ∗ 5 ∗ 7 ∗ 8 ) 2 ∗ 19 n!=(3*6*9*12*15*18)*(1*2*4*5*7*8)*(10*11*13*14*17)*19=(3^6*6!)*(1*2*4*5*7*8)^2*19 n!=(369121518)(124578)(1011131417)19=(366!)(124578)219,分析可以看出, ⌊ n p i ⌋ \lfloor \frac{n}{p_i} \rfloor pin!* p i ⌊ n p i ⌋ p_i^{\lfloor \frac{n}{p_i} \rfloor} pipin,之后是以 p i p_i pi为一个周期作数,每个周期由于是mod,1和1+ p i k i p_i^{k_i} pikimod p i k i p_i^{k_i} piki同余。最后直接处理一下单个的19,也就是未成循环节的部分。处理完(1 * 2 * 4 * 5 * 7 * 8),之后递归处理6!,跟之前一样的处理方式,最后只需要再判断一下总的是p的多少次幂,到这里就解决了。
题目:Gym - 100633J
裸题 C n k m o d m C_n^k mod m Cnkmodm

#include<cmath>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cstdlib>
#include<istream>
#include<vector>
#include<stack>
#include<set>
#include<map>
#include<algorithm>
#include<queue>
#define inf 0x3f3f3f3f
#define llinf 0x3f3f3f3f3f3f3f3f
#define MAX_len 50100*4
using namespace std;
typedef long long ll;
//const int mod=998244353;
ll tot=0;
ll prime[1000100],mprime[1000100];
void init(ll n)
{
    ll temp=n;
    for(ll i=2;i*i<=n;i++)
    {
        if(temp%i==0)
        {
            prime[tot]=i;
            mprime[tot]=1;
            while(temp%i==0)
            {
                temp/=i;
                mprime[tot]*=i;
            }
            tot++;
        }
    }
    if(temp>1)
    {
        prime[tot]=temp;
        mprime[tot]=temp;
        tot++;
    }
}
ll quickpow(ll a,ll n,ll p)
{
    ll res=1;
    while(n)
    {
        if(n&1)
        {
            res=(res*a)%p;
        }
        n>>=1;
        a=(a*a)%p;
    }
    return res;
}
ll C1(ll n,ll pi,ll pk)
{
    if(n==0)
        return 1;
    ll ans=1;
    for(ll i=2;i<=pk;i++)
    {
        if(i%pi==0)
            continue;
        ans=(ans*i)%pk;
    }
    ans=quickpow(ans,n/pk,pk);
    ll temp=n%pk;
    for(ll i=2;i<=temp;i++)
    {
        if(i%pi==0)
            continue;
        ans=(ans*i)%pk;
    }
    return ans*C1(n/pi,pi,pk)%pk;
}
ll ex_gcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    ll t=ex_gcd(b,a%b,x,y);
    ll temp=y;
    y=x-(a/b)*y;
    x=temp;
    return t;
}
ll revers(ll a,ll b)
{
    ll x,y;
    ll g=ex_gcd(a,b,x,y);
    //逆元一定有解
    ll temp=(x%b+b)%b;
        return temp;
}
ll comb(ll n,ll m,ll cur,ll mod)
{
    ll pi=prime[cur],pk=mprime[cur];
    ll a,b,c;
    a=C1(n,pi,pk);
    b=C1(m,pi,pk);
    c=C1(n-m,pi,pk);
    ll am=0;
    ll temp=n;
    while(temp)
    {
        am+=temp/pi;
        temp/=pi;
    }
    temp=m;
    while(temp)
    {
        am-=temp/pi;
        temp/=pi;
    }
    temp=n-m;
    while(temp)
    {
        am-=temp/pi;
        temp/=pi;
    }
    ll ans=a*((revers(b,pk)%pk)*(revers(c,pk)%pk)%pk)*(quickpow(pi,am,pk));
    return (ans%mod)*((mod/pk)%mod)*(revers(mod/pk,pk)%mod);
}
ll exlucas(ll n,ll m,ll mod)
{
    ll ans=0;
    for(ll i=0;i<tot;i++)
    {
        ans=(ans+comb(n,m,i,mod))%mod;
    }
    return ans;
}
int main()
{
    ll n,m,mod;
    scanf("%I64d %I64d %I64d",&n,&m,&mod);
    init(mod);
    printf("%I64d\n",exlucas(n,m,mod));
    return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值