17省4-方格分割
题目链接.
【关键词】dfs 二维数组
【思路】
以中心点(3 ,3)为原点,划分得到4个形状相等的象限,这使得很容易通过计算一个象限的情况而得到所有情况
以中心点为起点使用dfs,每次同时遍历一个点以及与中心点的对称的点,最后将结果/4(总共有4个一样的象限嘛
#include<bits/stdc++.h>
using namespace std;
int outcome=0;
int vis[7][7]={0};
void dfs(int x,int y){
if(x==0||x==6||y==0||y==6) {outcome++;
return ;}
vis[x][y]=1;
vis[6-x][6-y]=1;
if(!vis[x+1][y]) dfs(x+1,y);
if(!vis[x-1][y]) dfs(x-1,y);
if(!vis[x][y+1]) dfs(x,y+1);
if(!vis[x][y-1]) dfs(x,y-1);
vis[x][y]=0;
vis[6-x][6-y]=0;
}
int main(){
dfs(3,3);
cout<<outcome/4;
return 0;
}
#include<iostream>
using namespace std;
int ans=0;//枚举记数
int vis[7][7] = { 0 };//标记已走过的点
int mov[4][2] = { {1,0},//单位移动方向向量
{0,1},//从每个点可以往这四个方向走
{-1,0},
{0,-1} };
void walk(int x, int y)
{
if (x == 0 || x == 6 || y == 0 || y == 6) {//已到边界,分割完毕
ans++;
return;
}
vis[x][y] = 1;//先标记
vis[6 - x][6 - y] = 1;//中心对称的点也标记
for (int i = 0; i < 4; i++)//走下一个点
{
//四个方向进行枚举,注意不能改变x和y的值,否则会影响到之后的回溯
if (!vis[ x + mov[i][0] ][ y + mov[i][1] ]) {
walk(x + mov[i][0], y + mov[i][1]);
}
}
vis[x][y] = 0;//枚举完毕,清除标记
vis[6 - x][6 - y] = 0;//对称点的标记也清除
}
int main()::
{
walk(3, 3);//中心点为(3,3)
cout << ans / 4 << endl;//因为每种走法有3种重复
//所以同一种走法会走4次,数4次
return 0;
}
135.349469和3.886331
根据题目的信息,最小值显示2086458231,根据这个数字我们可以计算出最大数字显示是多少。
#include<bits/stdc++.h>
using namespace std;
double a[30][30]={
{7 },
{5, 8},
{7, 8, 8 },
{9, 2, 7, 2},
{8 ,1, 4, 9 ,1 },
{8 ,1, 8 ,8 ,4 ,1 },
{7, 9 ,6, 1, 4, 5, 4 },
{5, 6, 5, 5 ,6 ,9 ,5 ,6 },
{5, 5, 4, 7, 9 ,3, 5, 5 ,1 },
{7, 5 ,7 ,9 ,7, 4, 7, 3, 3, 1},
{4, 6 ,4 ,5, 5 ,8 ,8, 3 ,2, 4, 3 },
{1, 1 ,3, 3 ,1 ,6, 6, 5, 5 ,4, 4, 2 },
{9, 9 ,9, 2, 1, 9 ,1 ,9, 2, 9 ,5, 7, 9},
{4, 3, 3, 7 ,7 ,9 ,3 ,6 ,1 ,3 ,8 ,8, 3, 7 },
{3 ,6 ,8 ,1 ,5 ,3, 9, 5, 8 ,3 ,8 ,1, 8 ,3, 3},
{8 ,3, 2, 3, 3, 5 ,5, 8 ,5, 4 ,2 ,8, 6 ,7, 6, 9 },
{8, 1, 8, 1, 8, 4 ,6, 2, 2, 1 ,7 ,9 ,4, 2 ,3, 3 ,4 },
{2, 8 ,4 ,2 ,2, 9 ,9, 2 ,8, 3 ,4 ,9 ,6, 3 ,9 ,4, 6, 9 },
{7, 9 ,7, 4, 9, 7, 6, 6 ,2 ,8, 9 ,4, 1 ,8, 1 ,7, 2, 1, 6 },
{9 ,2, 8 ,6 ,4, 2 ,7 ,9 ,5, 4, 1 ,2 ,5, 1 ,7, 3, 9 ,8, 3, 3 },
{5, 2, 1 ,6 ,7 ,9, 3 ,2 ,8 ,9 ,5 ,5, 6, 6, 6 ,2, 1 ,8, 7, 9, 9 },
{6, 7 ,1, 8, 8, 7 ,5, 3, 6 ,5 ,4 ,7, 3, 4 ,6 ,7, 8, 1, 3 ,2 ,7, 4},
{ 2, 2, 6, 3, 5, 3, 4, 9 ,2, 4 ,5 ,7, 6, 6, 3 ,2 ,7, 2 ,4, 8, 5, 5, 4 },
{7, 4, 4, 5, 8, 3, 3, 8, 1,8, 6, 3, 2, 1, 6, 2 ,6, 4 ,6, 3 ,8, 2, 9, 6},
{1, 2, 4, 1, 3, 3, 5, 3, 4, 9 ,6, 3 ,8, 6 ,5, 9, 1, 5 ,3 ,2 ,6, 8 ,8, 5, 3 },
{2, 2, 7, 9, 3, 3, 2, 8, 6, 9, 8, 4, 4, 9, 5, 8, 2, 6, 3, 4, 8, 4, 9, 3, 8, 8},
{7 ,7 ,7 ,9 ,7 ,5 ,2 ,7 ,9 ,2 ,5 ,1 ,9 ,2 ,6 ,5 ,3 ,9 ,3 ,5 ,7 ,3 ,5 ,4 ,2 ,8 ,9 },
{7 ,7 ,6 ,6 ,8 ,7 ,5 ,5 ,8 ,2 ,4 ,7 ,7 ,4 ,7 ,2 ,6 ,9 ,2 ,1 ,8 ,2 ,9 ,8 ,5 ,7 ,3 ,6 },
{5 ,9 ,4 ,5 ,5 ,7 ,5 ,5 ,6 ,3 ,5 ,3 ,9 ,5 ,8 ,9 ,5 ,4 ,1 ,2 ,6 ,1 ,4 ,3 ,5 ,3 ,2 ,4 ,1}
};
int main(){
int i,j;
double maxx=0,minn=9999999;
for(i=1; i<=29; i++){
for(j=0; j<=i; j++){
//如果为首尾两个数值话,直接自身/2运算
if(j==0){
a[i][j] += a[i-1][0]/2.0;
}else{
//正常两个数值进行向下除法加法运算
a[i][j] += a[i-1][j-1]/2.0 + a[i-1][j]/2.0;
}
}
}
for(i=0; i<=29; i++){
if(a[29][i]<minn){
minn = a[29][i];
}
if(a[29][i]>maxx){
maxx = a[29][i];
}
}
printf("%.0lf\n",2086458231/minn*maxx);
return 0;}
答案:72665192664
#include <stdio.h>
#include <algorithm>
using namespace std;
int num=0;
//判断个位是否为0或与高位重复
int dup(int z)
{
int n=z%10; //个位
if (n==0) //不能为0
return 1;
while (z>10)
{
z/=10;
if ( z%10==n )
return 1;
}
return 0;
}
//判断条件,当z满足从1到9全不重复返回0,否则返回1
int check(int z)
{
while (z>10)
{
if ( dup(z)==1 )
return 1;
z/=10;
}
return 0;
}
void p2(int *a,int i)
{
int j,x=0,y=0,z;
for (j=0;j<=i;j++)
x=x*10+a[j];
for (j=i+1;j<=8;j++)
y=y*10+a[j];
z=x*y;
if ( z>123456789 && !check(z) )
{
num++;
//printf("%d*%d=%d\n",x,y,z); 1040254
}
}
void process(int *a)
{
int i;
for (i=0;i<=7;i++) //i代表乘号分割位置
{
p2(a,i);
}
}
int main()
{
int n=9;
int a[]={1,2,3,4,5,6,7,8,9};
do
{
process(a);
} while (next_permutation(a,a+n));
printf("%d\n",num/2);
return 0;
}
#include<bits/stdc++.h>
using namespace std;
int a[10][10];
int ans = 0;
string b[10];
//对每个位置测试看是否能走出迷宫
// x,y代表位置
bool check(int x,int y)
{
// 走出迷宫
if(x<0||x>9||y<0||y>9) return 1;
// 如果此点被访问了,又被访问,说明在兜圈子
if(a[x][y]==1) return 0;
// 标记此点被访问过
a[x][y]=1;
switch(b[x][y])
{
case 'U':return check(x-1,y);
case 'D':return check(x+1,y);
case 'L':return check(x,y-1);
case 'R':return check(x,y+1);
default:return 0;
}
}
int main(){
// char b[10][];
// string b[10];
b[0]="UDDLUULRUL";
b[1]="UURLLLRRRU";
b[2]="RRUURLDLRD";
b[3]="RUDDDDUUUU";
b[4]="URUDLLRRUU";
b[5]="DURLRLDLRL";
b[6]="ULLURLLRDU";
b[7]="RDLULLRDDD";
b[8]="UUDDUDUDLL";
b[9]="ULRDLUURRR";
for(int i=0;i<10;i++)
{
for(int j=0;j<10;j++)
{
// 每次测试新的位置,都把数组a全部元素重置为0
// 不然有部分被置为1了
memset(a,0,sizeof(a));
if(check(i,j))
ans++;
}
}
cout<<ans<<endl;
return 0;
}