E - Crypto Lights
题目描述
给你 n n n 个初始关闭的灯,每次随机操作把一个关闭的灯打开,一直操作直到出现两个亮着的灯的距离小于等于 k k k 。
求最后期望亮着多少个灯。
数据范围与提示
共有 t t t 组数据;
1 ≤ t ≤ 10 , 1 ≤ k ≤ n ≤ 1 0 5 1\le t\le 10,1\le k\le n\le 10^5 1≤t≤10,1≤k≤n≤105 。
前言
D题真做不来,不知道 ⌈ n 2 ⌉ \lceil\frac{n}{2}\rceil ⌈2n⌉ 这个条件怎么用。最后只想了个大约 O ( 4 ∗ n ∗ ( 15 7 ) ) O(4*n*{15\choose7}) O(4∗n∗(715)) 的做法, Linux \text{Linux} Linux 机子跑半分钟才跑得过。
于是看了看E题,发现比D题温和好多,分值还比D题高。早做早划算呐。
思路
考虑到如果有 i i i 个灯亮着意味着前面依次打开的 i − 1 i-1 i−1 个灯两两距离大于 k k k 。
设
d
p
[
i
]
dp[i]
dp[i] 表示依次点亮
i
i
i 个灯间距大于
k
k
k 的方案数,显然有
d
p
[
i
]
=
(
n
−
(
i
−
1
)
∗
(
k
−
1
)
i
)
∗
i
!
dp[i]={n-(i-1)*(k-1)\choose i}*i!
dp[i]=(in−(i−1)∗(k−1))∗i!
其实是个独立的式子,不能算DP了。
简要分析一下,每1种点亮 i i i 个灯的方案一定对应着 ( n − i ) (n-i) (n−i) 种点亮 i + 1 i+1 i+1 个灯的方案,而点亮 i + 1 i+1 i+1 个灯后仍未停止(即间距仍大于 k k k )的方案数为 d p [ i + 1 ] dp[i+1] dp[i+1] ,所以容斥一下,恰好点亮 i + 1 i+1 i+1 个灯的方案数就为 d p [ i ] ∗ ( n − i ) − d p [ i + 1 ] dp[i]*(n-i)-dp[i+1] dp[i]∗(n−i)−dp[i+1] 。
对每个 i i i 乘上概率算贡献即可,时间复杂度 O ( t n ) O(tn) O(tn)
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<ctime>
#include<map>
#define ll long long
#define MAXN 100005
#define uns unsigned
#define INF 0x3f3f3f3f
#define MOD 1000000007ll
#define lowbit(x) ((x)&(-(x)))
using namespace std;
inline ll read(){
ll x=0;bool f=1;char s=getchar();
while((s<'0'||s>'9')&&s>0){if(s=='-')f^=1;s=getchar();}
while(s>='0'&&s<='9')x=(x<<1)+(x<<3)+s-'0',s=getchar();
return f?x:-x;
}
inline ll ksm(ll a,ll b,ll mo){
ll res=1;
for(;b;b>>=1,a=a*a%mo)if(b&1)res=res*a%mo;
return res;
}
int n,k;
ll fac[MAXN],inv[MAXN],dp[MAXN];
inline ll C(ll n,int m){
if(n<0||m>n||m<0)return 0;
return fac[n]*inv[m]%MOD*inv[n-m]%MOD;
}
int main()
{
fac[0]=fac[1]=inv[0]=inv[1]=1;
for(int i=2;i<MAXN-4;i++)fac[i]=fac[i-1]*i%MOD;
inv[MAXN-5]=ksm(fac[MAXN-5],MOD-2,MOD);
for(int i=MAXN-6;i>1;i--)inv[i]=inv[i+1]*(1ll+i)%MOD;
for(int T=read();T--;){
n=read(),k=read();
memset(dp,0,sizeof(dp));
dp[0]=1;
ll ans=0;
for(int i=n-1;i>0;i--){
dp[i]=C(1ll*n-1ll*(i-1)*(k-1),i)*fac[i]%MOD;
ll tot=((dp[i]*(n-i)-dp[i+1])%MOD+MOD)%MOD;
ll p=fac[n-i-1]*inv[n]%MOD;
ans=(ans+p*(i+1)%MOD*tot%MOD)%MOD;
}
printf("%lld\n",ans);
}
return 0;
}