[2022省选模拟]守序划分问题——DP

此题不提供链接

题目描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

前言

比赛中想到的解法还没有严谨地证明,就过样例了,感觉实属运气好。

题解

这个范围…感觉很像递推算斯特林数再加上一维。

先考虑怎么翻译一个划分守序:由于每个点出入度为1的连通图等价于环排列,而这个限制又恰好在两两之间,所以我们把它转化为每个 M i n Min Min 可以向另一个集合的 M a x Max Max 连边,最后使得所有集合连通。

要想让整个图联通,显然是要尽可能地让每个 M i n Min Min 都能和一个 M a x Max Max 匹配,这样每个集合都有一条出边,而最多一条入边,就能形成环。仅这样还不行,可能会形成很多环,所以最后还要让整个图环的数量为1。

于是就有一个贪心思路:先把最小的 M i n Min Min 和某个 M a x Max Max 匹配,然后第二小的 M i n Min Min 再和剩下的 M a x Max Max 匹配…

贪心的过程,相当于在从小到大考虑每个集合。我们不妨按同样的顺序,从小到大枚举每个数加入集合,这也正符合斯特林数的求法。

d p [ i ] [ j ] [ S ] dp[i][j][S] dp[i][j][S] 表示枚举到第 i i i 个数,总共有 j j j 个集合,集合的连通状况是 S S S 的集合划分数量。画画图会发现,最优决策下的连通块一定是按 M i n Min Min 升序排序后的连续的一段集合,所以 S S S 一定是总长为 j j j 的若干连续段。


想到这里的时候,我决议着要不要放弃这个DP了,因为状态数这么大的DP怎么可能做得起嘛!而且我根本不知道最优决策下的连通块是怎么求的,只是假设求出了最优的状态。我感觉这么做简直就是浪费时间,不如打暴力,但既然已经发现一些简单结论了,不妨再推个几分钟?


考虑两种转移:
i i i 独立为一个集合,由于此时 i i i 显然不能连出边,所以不能与其它集合形成环,那么最优决策肯定是直接忽略它,那就是这个集合作为一个连通块加在 S S S 后面。
i i i 加入到前面某个集合,此时集合的 M i n Min Min 不变,而 M a x Max Max 变为了最大,通过构造发现这个集合和后面 M i n Min Min 大于它的所有集合一定可以形成一个环,也就是一个连通块,而前面的连通块不变,所以最优决策的 S S S 变为保留前面的连通块,后面所有连通块合并为一个大连通块。

由于我们最后求的是一个连通块时的划分数,所以如果第一个连通块内的集合数小于 j j j 的话,后面怎么合并、添连通块都不会计入答案,而要使第一个连通块内的集合数变化的话,只能通过新添元素加入到连通块内的集合,而此时就已经与后面的连通块合并为一整个连通块了。

所以我们可以把 S S S 变为只记录第一个连通块内的集合 k k k,然后新元素加入集合时就乘上 j − k j-k jk k k k 的系数就可以了。

这样一来,状态数是:…

n 3 n^3 n3!!!!

我居然成功把状态减少到了 n 3 n^3 n3!!!!

代码

DP部分非常简短,应该很容易看懂

#include<bits/stdc++.h>//JZM yyds!!
#define ll long long
#define uns unsigned
#define IF (it->first)
#define IS (it->second)
#define END putchar('\n')
using namespace std;
const int MAXN=505;
const ll INF=1e18;
inline ll read(){
	ll x=0;bool f=1;char s=getchar();
	while((s<'0'||s>'9')&&s>0){if(s=='-')f^=1;s=getchar();}
	while(s>='0'&&s<='9')x=(x<<1)+(x<<3)+(s^48),s=getchar();
	return f?x:-x;
}
int ptf[30],lpt;
inline void print(ll x,char c='\n'){
	if(x<0)putchar('-'),x=-x;
	ptf[lpt=1]=x%10;
	while(x>9)x/=10,ptf[++lpt]=x%10;
	while(lpt)putchar(ptf[lpt--]^48);
	if(c>0)putchar(c);
}
inline ll lowbit(ll x){return x&-x;}

const ll MOD=998244353;
int n,m;
ll dp[2][MAXN][MAXN];
inline void ad(ll&a,ll b){a+=b;if(a>=MOD)a-=MOD;}
signed main()
{
	freopen("partition.in","r",stdin);
	freopen("partition.out","w",stdout);
	n=read(),m=read();
	dp[1][1][1]=1;
	for(int i=2;i<=n;i++){
		bool e=i&1,t=e^1;
		for(int j=1;j<=i;j++)
			for(int k=1;k<=j;k++)dp[e][j][k]=0;//滚动清零
		for(int j=1;j<i;j++){
			for(int k=1;k<=j;k++){
				ad(dp[e][j+1][k],dp[t][j][k]);
				ad(dp[e][j][k],dp[t][j][k]*(j-k)%MOD);
				ad(dp[e][j][j],dp[t][j][k]*k%MOD);
			}
		}
	}
	print(dp[n&1][m][m]);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值