[AGC034F] RNG and XOR——异或卷积、沃尔什变换

[AGC034F] RNG and XOR

题解

比较有意思的一道题。

f ( i ) f(i) f(i) 表示第一次变成 i i i 的期望次数,首先肯定有 f ( 0 ) = 0 f(0)=0 f(0)=0,然后不妨枚举从 0 开始走的第一步,那么有 f ( i ) = 1 + ∑ j = 0 2 n − 1 P ( j ) f ( i ⨁ j ) f(i)=1+\sum_{j=0}^{2^n-1}P(j)f(i\bigoplus j) f(i)=1+j=02n1P(j)f(ij) P ( j ) P(j) P(j) 表示数异或上 j j j 的概率)我们发现这玩意长得像异或卷积,但又不完全相同。既然长得像,那么我们不妨先把它们转换成点值看看:

x i x_i xi 表示 f ( x ) f(x) f(x) 做了沃尔什变换后 i i i 处的点值, p i p_i pi 表示 P ( x ) P(x) P(x) 变换后 i i i 处的点值, y i y_i yi 表示函数 g ( x ) = 1 g(x)=1 g(x)=1 i i i 处的点值,那么只看同一下标,可以得到关系式:
x i × p i + y i + z = x i x_i\times p_i+y_i+z=x_i\\ xi×pi+yi+z=xi其中 z z z 是某个未知常数。为什么有这个常数,是因为 0 处的 f f f 值不满足最上面的那个式子,所以有偏差,而这个偏差的表现就是点值的上下平移。

观察发现 p i p_i pi 只有 0 处是 1,而其他地方都不为 1,因此可以得到 z = − y 0 z=-y_0 z=y0。由于其它地方的 p p p 不为 1,所以知道了 z z z 过后可以直接解出非 0 处的 x i x_i xi

虽然剩下一个 x 0 x_0 x0 未知,但是我们知道 f ( 0 ) = 1 2 n ∑ i = 0 2 n − 1 x i = 0 f(0)=\frac{1}{2^n}\sum_{i=0}^{2^n-1}x_i=0 f(0)=2n1i=02n1xi=0(沃尔什逆变换),所以推出 x 0 = − ∑ i = 1 2 n − 1 x i x_0=-\sum_{i=1}^{2^n-1}x_i x0=i=12n1xi,于是我们巧妙求得了 f ( x ) f(x) f(x) 每一处的点值。

剩下只需要把点值再转换回来即可。

代码

#include<bits/stdc++.h>//JZM yyds!!
#define ll long long
#define lll __int128
#define uns unsigned
#define fi first
#define se second
#define IF (it->fi)
#define IS (it->se)
#define END putchar('\n')
#define lowbit(x) ((x)&-(x))
#define inline jzmyyds
using namespace std;
const int MAXN=1<<18;
const ll INF=1e18;
ll read(){
	ll x=0;bool f=1;char s=getchar();
	while((s<'0'||s>'9')&&s>0){if(s=='-')f^=1;s=getchar();}
	while(s>='0'&&s<='9')x=(x<<1)+(x<<3)+(s^48),s=getchar();
	return f?x:-x;
}
int ptf[50],lpt;
void print(ll x,char c='\n'){
	if(x<0)putchar('-'),x=-x;
	ptf[lpt=1]=x%10;
	while(x>9)x/=10,ptf[++lpt]=x%10;
	while(lpt>0)putchar(ptf[lpt--]^48);
	if(c>0)putchar(c);
}

const ll MOD=998244353;
ll ksm(ll a,ll b,ll mo){
	ll res=1;
	for(;b;b>>=1,a=a*a%mo)if(b&1)res=res*a%mo;
	return res;
}

int n;
ll y[MAXN],P[MAXN],x[MAXN],sum,z;
void FWTXOR(ll*a,int inv){
	const ll cg=inv>0?1:((MOD+1)>>1);ll x,y;
	for(int m=1;m<n;m<<=1)
		for(int i=0;i<n;i+=(m<<1))
			for(int j=i;j<i+m;j++)
				x=a[j],y=a[j+m],a[j]=(x+y)*cg%MOD,a[j+m]=(x-y+MOD)*cg%MOD;
}
int main()
{
	n=1<<read();
	for(int i=0;i<n;i++)P[i]=read(),sum+=P[i],y[i]=1;
	sum=ksm(sum,MOD-2,MOD);
	for(int i=0;i<n;i++)(P[i]*=sum)%=MOD;
	FWTXOR(P,1),FWTXOR(y,1),z=(MOD-y[0])%MOD;
	for(int i=1;i<n;i++)
		x[i]=(y[i]+z)*ksm(MOD+1-P[i],MOD-2,MOD)%MOD,x[0]+=MOD-x[i];
	x[0]%=MOD,FWTXOR(x,-1);
	for(int i=0;i<n;i++)print(x[i]);
	return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值