一些有用的数学知识(Updating)

拉格朗日插值公式

对于 n − 1 n-1 n1 次多项式 f ( x ) f(x) f(x) 上的 n n n 个点 ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯ ( x n , y n ) (x_1,y_1),(x_2,y_2),\cdots (x_n,y_n) (x1,y1),(x2,y2),(xn,yn) ,如果倒推出 f ( x ) f(x) f(x) 的话,有

f ( x ) = ∑ i = 1 n y i ∏ j ≠ i x − x j x i − x j f(x)=\sum_{i=1}^ny_i\prod_{j\not=i}\frac{x-x_j}{x_i-x_j} f(x)=i=1nyij=ixixjxxj

微分中值定理

费马引理

如果在一段曲线当中存在一个点 x 0 x_0 x0,使得在 x 0 x_0 x0邻域(包含 x 0 x_0 x0 的一段极小区间?)内都存在 f ( x ) ≤ f ( x 0 ) f(x)\leq f(x_0) f(x)f(x0)(或 f ( x ) ≥ f ( x 0 ) f(x)\geq f(x_0) f(x)f(x0)),那么 f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

拉格朗日中值定理

若函数 f ( x ) f(x) f(x) 满足

  • 在闭区间 [ a , b ] [a,b] [a,b] 连续
  • 在开区间 ( a , b ) (a,b) (a,b) 可导

那么存在 k ∈ ( a , b ) k\in(a,b) k(a,b) 满足:

f ′ ( k ) = f ( b ) − f ( a ) b − a f'(k)=\frac{f(b)-f(a)}{b-a} f(k)=baf(b)f(a)

柯西中值定理

对于两个函数 f ( x ) , F ( x ) f(x),F(x) f(x),F(x),若

  • 都在闭区间 [ a , b ] [a,b] [a,b] 连续
  • 都在开区间 ( a , b ) (a,b) (a,b) 可导
  • 对于任意 x ∈ ( a , b ) x\in(a,b) x(a,b) F ′ ( x ) ≠ 0 F'(x)\not=0 F(x)=0

那么存在 k ∈ ( a , b ) k\in(a,b) k(a,b) 满足

f ′ ( k ) F ′ ( k ) = f ( b ) − f ( a ) F ( b ) − F ( a ) \frac{f'(k)}{F'(k)}=\frac{f(b)-f(a)}{F(b)-F(a)} F(k)f(k)=F(b)F(a)f(b)f(a)

洛必达法则

对于两个函数 f ( x ) , F ( x ) f(x),F(x) f(x),F(x),若

  • x x x 趋近于常数 a a a 时, f ( x ) , F ( x ) f(x),F(x) f(x),F(x) 趋近于 0 0 0
  • 在点 a a a去心领域内,两个函数可导,且 F ′ ( x ) ≠ 0 F'(x)\not=0 F(x)=0
  • lim ⁡ x → 0 f ′ ( x ) F ′ ( x ) \lim_{x\rightarrow0}\frac{f'(x)}{F'(x)} limx0F(x)f(x) 存在

那么

lim ⁡ x → a f ( x ) F ( x ) = lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim_{x\rightarrow a}\frac{f(x)}{F(x)}=\lim_{x\rightarrow a}\frac{f'(x)}{F'(x)} xalimF(x)f(x)=xalimF(x)f(x)

该公式可套娃

还有另一种变形,若

  • x x x 趋近于 ∞ \infty 时, f ( x ) , F ( x ) f(x),F(x) f(x),F(x) 趋近于 0 0 0 或者 ∞ \infty
  • 存在一个区间 ( − ∞ , N ) ∪ ( N , + ∞ ) (-\infty,N)∪(N,+\infty) (,N)(N,+) 内,两个函数可导,且 F ′ ( x ) ≠ 0 F'(x)\not=0 F(x)=0
  • lim ⁡ x → 0 f ′ ( x ) F ′ ( x ) \lim_{x\rightarrow0}\frac{f'(x)}{F'(x)} limx0F(x)f(x) 存在

那么

lim ⁡ x → ∞ f ( x ) F ( x ) = lim ⁡ x → ∞ f ′ ( x ) F ′ ( x ) \lim_{x\rightarrow \infty}\frac{f(x)}{F(x)}=\lim_{x\rightarrow \infty}\frac{f'(x)}{F'(x)} xlimF(x)f(x)=xlimF(x)f(x)

连分数(NOI2021 D2T2 考点)

资料来源

定义

对一个分数 p q \frac{p}{q} qp 的分子分母 p , q p,q p,q 进行辗转相除法,令第 i i i 次除法得到的 a i − 1 a_{i-1} ai1,那么该分数就可以表示成连分数:
p q = a 0 + 1 a 1 + 1 a 2 + 1 ⋱ + 1 a k = [ a 0 , a 1 , a 2 , . . . , a k ] \cfrac pq=a_0+\cfrac{1}{a_1+\cfrac{1}{a_2+\cfrac{1}{\ddots+\cfrac{1}{a_k}}}}=[a_0,a_1,a_2,...,a_k] qp=a0+a1+a2++ak1111=[a0,a1,a2,...,ak]

  • a i a_i ai 算起到直到最后一项组成的连分数 [ a i , a i + 1 , . . . , a k ] [a_i,a_{i+1},...,a_k] [ai,ai+1,...,ak] 称为该分数的 i i i 个余项 / 余式,表示为 r i r_i ri。因此,原分数可表示为 [ a 0 , a 1 , . . . , r i ] [a_0,a_1,...,r_i] [a0,a1,...,ri],需要注意的是 r i r_i ri 是个实数。
  • 从第 0 项直到第 i i i 项组成的连分数 [ a 0 , a 1 , . . . , a i ] [a_0,a_1,...,a_i] [a0,a1,...,ai] 称为 i i i 近似 / 第 i i i 截断,表示为 s i s_i si,写成分数形式的 s i = p i q i s_i=\cfrac{p_i}{q_i} si=qipi 则称为 i i i 渐进分数 / i i i 阶渐进分数。通过截取连分数的 i i i 阶渐进获取近似分数,能在分子分母尽量小的情况下,得到误差最小的结果。
  • 无理数表示成连分数会有无穷项。

结论

定理1

对于一个实数 x x x 表示成连分数 [ a 0 , a 1 , a 2 , . . . ] [a_0,a_1,a_2,...] [a0,a1,a2,...],令 s k = p k q k s_k=\cfrac{p_k}{q_k} sk=qkpk,则
{ p 0 = a 0 q 0 = 1    ,    { p 1 = a 0 a 1 + 1 q 1 = a 1    ,    { p k = a k p k − 1 + p k − 2 q k = a k q k − 1 + q k − 2 {\bigg\lbrace}\begin{matrix}p_0=a_0\\q_0=1\end{matrix}\;,\; {\bigg\lbrace}\begin{matrix}p_1=a_0a_1+1\\q_1=a_1\end{matrix}\;,\; {\bigg\lbrace}\begin{matrix}p_k=a_kp_{k-1}+p_{k-2}\\q_k=a_kq_{k-1}+q_{k-2}\end{matrix} {p0=a0q0=1,{p1=a0a1+1q1=a1,{pk=akpk1+pk2qk=akqk1+qk2

可以递推求渐进分数。而且,还保证了 g c d ( p k , q k ) = 1 {\rm gcd}(p_k,q_k)=1 gcd(pk,qk)=1

同时,可以发现 p k p_k pk q k q_k qk 是递增的(除了 q 0 q_0 q0 可能等于 q 1 q_1 q1 以外)。当然,从连分数的性质出发来看,这是句废话。

定理2

把定理1里面的式子
p k = a k p k − 1 + p k − 2 p_k=a_kp_{k-1}+p_{k-2} pk=akpk1+pk2

两边同除 p k − 1 p_{k-1} pk1,得
p k p k − 1 = a k + p k − 2 p k − 1 \cfrac{p_k}{p_{k-1}}=a_k+\cfrac{p_{k-2}}{p_{k-1}} pk1pk=ak+pk1pk2

按照这个规律迭代下去
p k p k − 1 = a k + 1 p k − 1 p k − 2 = a k + 1 a k − 1 + p k − 3 p k − 2 = a k + 1 a k − 1 + 1 a k − 2 + 1 ⋱ + a 0 = [ a k , a k − 1 , . . . , a 0 ] \cfrac{p_k}{p_{k-1}}=a_k+\cfrac{1}{\cfrac{p_{k-1}}{p_{k-2}}}=a_k+\cfrac{1}{a_{k-1}+\cfrac{p_{k-3}}{p_{k-2}}}\\ =a_k+\cfrac{1}{a_{k-1}+\cfrac{1}{a_{k-2}+\cfrac{1}{\ddots+a_0}}}=[a_k,a_{k-1},...,a_0] pk1pk=ak+pk2pk11=ak+ak1+pk2pk31=ak+ak1+ak2++a0111=[ak,ak1,...,a0]

那么就可以得到一个很美观的推论:
p k p k − 1 = [ a k , a k − 1 , . . . , a 0 ]    ( a 0 ≠ 0 ) \cfrac{p_k}{p_{k-1}}=[a_k,a_{k-1},...,a_0]~~(a_0\not=0) pk1pk=[ak,ak1,...,a0]  (a0=0)

同理可得
q k q k − 1 = [ a k , a k − 1 , . . . , a 1 ] \cfrac{q_k}{q_{k-1}}=[a_k,a_{k-1},...,a_1] qk1qk=[ak,ak1,...,a1]

上述两个推论即定理2,又称反序定理

定理3

为了凸显连分数的优越性,我们会对其相邻的渐进分数之差感兴趣,不妨求一求:
p k + 1 q k + 1 − p k q k = p k + 1 q k − p k q k + 1 q k + 1 q k \cfrac{p_{k+1}}{q_{k+1}}-\cfrac{p_k}{q_k}=\cfrac{p_{k+1}q_k-p_kq_{k+1}}{q_{k+1}q_k} qk+1pk+1qkpk=qk+1qkpk+1qkpkqk+1

两边同乘 q k + 1 q k q_{k+1}q_{k} qk+1qk,可以有点思路,我们不妨先探究探究 p k + 1 q k − p k q k + 1 p_{k+1}q_k-p_kq_{k+1} pk+1qkpkqk+1:
p k + 1 q k − p k q k + 1 = ( a k + 1 p k + p k − 1 ) q k − p k ( a k + 1 q k + q k − 1 ) = a k + 1 p k q k − a k + 1 p k q k + p k − 1 q k − p k q k − 1 = − ( p k q k − 1 − p k − 1 q k ) \begin{matrix} p_{k+1}q_k-p_kq_{k+1}&=&(a_{k+1}p_k+p_{k-1})q_k-p_k(a_{k+1}q_k+q_{k-1})\\ &=& a_{k+1}p_kq_k-a_{k+1}p_kq_k+p_{k-1}q_k-p_kq_{k-1}\\ &=& -(p_kq_{k-1}-p_{k-1}q_k) \end{matrix} pk+1qkpkqk+1===(ak+1pk+pk1)qkpk(ak+1qk+qk1)ak+1pkqkak+1pkqk+pk1qkpkqk1(pkqk1pk1qk)

右边相当于把左边的下标都减一,我们得到了一个递推式子。由于我们知道 p 1 q 0 − p 0 q 1 = a 0 a 1 + 1 − a 0 a 1 = 1 p_1q_0-p_0q_1=a_0a_1+1-a_0a_1=1 p1q0p0q1=a0a1+1a0a1=1,因此,顺推过来,可以得到
p k + 1 q k − p k q k + 1 = ( − 1 ) k p_{k+1}q_k-p_kq_{k+1}=(-1)^k pk+1qkpkqk+1=(1)k

这便是定理3

两边同除以分母积,可以得到很重要的推论,它回答了开头的问题:
p k + 1 q k + 1 − p k q k = ( − 1 ) k q k + 1 q k \cfrac{p_{k+1}}{q_{k+1}}-\cfrac{p_k}{q_k}=\cfrac{(-1)^k}{q_{k+1}q_k} qk+1pk+1qkpk=qk+1qk(1)k

定理4

通过定理3的推论,不难发现

  • 定理4:对一个确定的连分数,其奇数项渐近分数严格递减,偶数项渐近分数严格递增,奇数项渐近分数总是大于相邻的偶数项渐近分数。
  • 推论:任一奇数项渐近分数都大于任一偶数项渐近分数。

也可以通过下面的定理5严格证明。

定理5

到底第 i i i 阶渐进分数跟原数 x x x 相差多少呢?

我们可以先把 x x x 表示成带余项的连分数 [ a 0 , a 1 , . . . , a i , r i + 1 ] [a_0,a_1,...,a_i,r_{i+1}] [a0,a1,...,ai,ri+1] ,此时第 i + 1 i+1 i+1 阶渐进分数就等于 x x x,通过定理3的推论,我们可以直接得出定理5
x − p i q i = ( − 1 ) i q i q i + 1 = ( − 1 ) i q i ( r i + 1 q i + q i − 1 ) x-\cfrac{p_i}{q_i}=\cfrac{(-1)^i}{q_iq_{i+1}}=\cfrac{(-1)^i}{q_i(r_{i+1}q_i+q_{i-1})} xqipi=qiqi+1(1)i=qi(ri+1qi+qi1)(1)i

也就是说,除了最后一项渐进分数以外(没有 r i + 1 r_{i+1} ri+1),奇数阶渐进分数恒大于 x x x ,偶数阶渐进分数恒小于 x x x

此时注意到,笔者专门在定理1结尾强调了 p k p_k pk q k q_k qk 的单调递增性。这样综合定理5就可以证明定理4及其推论了。同时,我们可以得到 i i i 阶渐进分数的大致图像了。

欧拉公式

e i x = cos ⁡ x + i sin ⁡ x e^{ix}=\cos x+i\sin x eix=cosx+isinx

正余弦的展开

由于
sin ⁡ ′ x = cos ⁡ x cos ⁡ ′ x = − sin ⁡ x \sin'x=\cos x\\ \cos'x=-\sin x sinx=cosxcosx=sinx

所以,对它们进行泰勒展开,用麦克劳林公式,可以得到:
sin ⁡ x = sin ⁡ 0 + sin ⁡ ′ 0 1 ! x + sin ⁡ ′ ′ 0 2 ! x 2 + . . . = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + . . . cos ⁡ x = cos ⁡ 0 + cos ⁡ ′ 0 1 ! x + cos ⁡ ′ ′ 0 2 ! x 2 + . . . = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + . . . \sin x=\sin0+\frac{\sin'0}{1!}x+\frac{\sin''0}{2!}x^2+...=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...\\ \cos x=\cos0+\frac{\cos'0}{1!}x+\frac{\cos''0}{2!}x^2+...=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+... sinx=sin0+1!sin0x+2!sin0x2+...=x3!x3+5!x57!x7+...cosx=cos0+1!cos0x+2!cos0x2+...=12!x2+4!x46!x6+...

虚数单位

虚数单位 i i i 有很多美妙的性质,其中一个就是它的整数次幂:
i 4 n = 1 i 4 n + 1 = i i 4 n + 2 = − 1 i 4 n + 3 = − i i^{4n}=1\\ i^{4n+1}=i\\ i^{4n+2}=-1\\ i^{4n+3}=-i i4n=1i4n+1=ii4n+2=1i4n+3=i

把虚数单位加入进正余弦的展开中,刚好可以去除正负号,便于下一步推导:
sin ⁡ x = i x + ( i x ) 3 3 ! + ( i x ) 5 5 ! + ( i x ) 7 7 ! + . . . i cos ⁡ x = ( i x ) 0 + ( i x ) 2 2 ! + ( i x ) 4 4 ! + ( i x ) 6 6 ! + . . . \sin x=\cfrac{ix+\cfrac{(ix)^3}{3!}+\cfrac{(ix)^5}{5!}+\cfrac{(ix)^7}{7!}+...}{i}\\ \cos x=(ix)^0+\cfrac{(ix)^2}{2!}+\cfrac{(ix)^4}{4!}+\cfrac{(ix)^6}{6!}+... sinx=iix+3!(ix)3+5!(ix)5+7!(ix)7+...cosx=(ix)0+2!(ix)2+4!(ix)4+6!(ix)6+...

整合

先把正弦的大横线去除掉:
i sin ⁡ x = i x + ( i x ) 3 3 ! + ( i x ) 5 5 ! + ( i x ) 7 7 ! + . . . i\sin x=ix+\cfrac{(ix)^3}{3!}+\cfrac{(ix)^5}{5!}+\cfrac{(ix)^7}{7!}+... isinx=ix+3!(ix)3+5!(ix)5+7!(ix)7+...

接下来就很明朗了:
cos ⁡ x + i sin ⁡ x = 1 + i x 1 ! + ( i x ) 2 2 ! + ( i x ) 3 3 ! + . . . \cos x+i\sin x=1+\cfrac{ix}{1!}+\cfrac{(ix)^2}{2!}+\cfrac{(ix)^3}{3!}+... cosx+isinx=1+1!ix+2!(ix)2+3!(ix)3+...

刚好是 e i x e^{ix} eix 的麦克劳林展开。

逆代

倒着用这个公式,可以得到三角函数的另一种表达式:
sin ⁡ x = e i x − e − i x 2 i = ( exp ⁡ ( i x ) − exp ⁡ ( − i x ) ) ⋅ ( 2 i ) − 1 cos ⁡ x = e i x + e − i x 2 = ( exp ⁡ ( i x ) + exp ⁡ ( − i x ) ) ⋅ 2 − 1 \sin x=\cfrac{e^{ix}-e^{-ix}}{2i}=(\exp(ix)-\exp(-ix))\cdot(2i)^{-1}\\ \cos x=\cfrac{e^{ix}+e^{-ix}}{2}=(\exp(ix)+\exp(-ix))\cdot2^{-1} sinx=2ieixeix=(exp(ix)exp(ix))(2i)1cosx=2eix+eix=(exp(ix)+exp(ix))21
最右边的表达式是可以直接运用到多项式三角函数中的。

Binet-Cauchy 公式

设矩阵 A = ( a i , j ) s × n   ,   B = ( b i , j ) n × s A=(a_{i,j})_{s\times n}~,~B=(b_{i,j})_{n\times s} A=(ai,j)s×n , B=(bi,j)n×s ,则

  1. s > n s>n s>n ∣ A B ∣ = 0 |AB|=0 AB=0.
  2. s ≤ n s\leq n sn ∣ A B ∣ = |AB|= AB=
    ∑ 1 ≤ i 1 < i 2 < . . . < i s ≤ n ∣ a 1 , i 1 a 1 , i 2 . . . a 1 , i s a 2 , i 1 a 2 , i 2 . . . a 2 , i s . . . . . . ⋱ . . . a s , i 1 a s , i 2 . . . a s , i s ∣ ⋅ ∣ b i 1 , 1 b i 1 , 2 . . . b i 1 , s b i 2 , 1 b i 2 , 2 . . . b i 2 , s . . . . . . ⋱ . . . b i s , 1 b i s , 2 . . . b i s , s ∣ \sum_{1\leq i_1<i_2<...<i_s\leq n} \left|\begin{matrix} a_{1,i_1}&a_{1,i_2}&...&a_{1,i_s}\\ a_{2,i_1}&a_{2,i_2}&...&a_{2,i_s}\\ ...&...&_\ddots&...\\ a_{s,i_1}&a_{s,i_2}&...&a_{s,i_s} \end{matrix}\right|\cdot \left|\begin{matrix} b_{i_1,1}&b_{i_1,2}&...&b_{i_1,s}\\ b_{i_2,1}&b_{i_2,2}&...&b_{i_2,s}\\ ...&...&_\ddots&...\\ b_{i_s,1}&b_{i_s,2}&...&b_{i_s,s}\\ \end{matrix}\right| 1i1<i2<...<isna1,i1a2,i1...as,i1a1,i2a2,i2...as,i2.........a1,isa2,is...as,isbi1,1bi2,1...bis,1bi1,2bi2,2...bis,2.........bi1,sbi2,s...bis,s

[朝花夕拾] 柯西不等式

对不起,球哥,我又把柯西忘了。

我这就复习……

二维形式

梦开始的地方:
∑ i = 1 n a i 2 ∑ i = 1 n b i 2 ≥ C a u c h y ( ∑ i = 1 n a i b i ) 2 \sum_{i=1}^{n}a_i^2\sum_{i=1}^{n}b_i^2\overset{Cauchy}{\geq}\left(\sum_{i=1}^{n}a_ib_i\right)^2 i=1nai2i=1nbi2Cauchy(i=1naibi)2

平方 大于等于 平方,左右刚好回文。

取等条件是对于 b i ≠ 0 b_i\not=0 bi=0 的所有 i i i ,满足 a i b i \frac{a_i}{b_i} biai 都相等,同时对于 b i = 0 b_i=0 bi=0 i i i ,满足 a i = 0 a_i=0 ai=0

向量形式

又是一个如此美妙的不等式:
A → = ( a 1 , a 2 , . . . , a n )   ,   B → = ( b 1 , b 2 , . . . , b n ) ∣ A → ∣ ⋅ ∣ B → ∣ ≥ ∣ A → ⋅ B → ∣ \overset{\rightarrow}{A}=(a_1,a_2,...,a_n)~,~\overset{\rightarrow}{B}=(b_1,b_2,...,b_n)\\ \left|\overset{\rightarrow}{A}\right|\cdot \left|\overset{\rightarrow}{B}\right|\geq \left|\overset{\rightarrow}{A}\cdot\overset{\rightarrow}{B}\right| A=(a1,a2,...,an) , B=(b1,b2,...,bn)ABAB

这个是关于向量的一个基本不等式,很好证,只需要根据向量内积定义展开,当且仅当两向量共线时取等。

实际上,这个就是柯西不等式:
∣ A → ∣ ⋅ ∣ B → ∣ = ∣ ( a 1 , a 2 , . . . , a n ) ∣ ⋅ ∣ ( b 1 , b 2 , . . . , b n ) ∣ = ∑ i = 1 n a i 2 ⋅ ∑ i = 1 n b i 2 ≥ ∣ A → ⋅ B → ∣ = ∣ ( a 1 , a 2 , . . . , a n ) ⋅ ( b 1 , b 2 , . . . , b n ) ∣ = ∣ ∑ i = 1 n a i b i ∣ \left|\overset{\rightarrow}{A}\right|\cdot \left|\overset{\rightarrow}{B}\right|=|(a_1,a_2,...,a_n)|\cdot |(b_1,b_2,...,b_n)|=\sqrt{\sum_{i=1}^{n}a_i^2}\cdot\sqrt{\sum_{i=1}^{n}b_i^2}\\ \geq \left|\overset{\rightarrow}{A}\cdot\overset{\rightarrow}{B}\right|=\Big|(a_1,a_2,...,a_n)\cdot (b_1,b_2,...,b_n)\Big|=\left|\sum_{i=1}^{n}a_ib_i\right| AB=(a1,a2,...,an)(b1,b2,...,bn)=i=1nai2 i=1nbi2 AB=(a1,a2,...,an)(b1,b2,...,bn)=i=1naibi

把两边平方就可以得到二维形式。

同时,二维形式的取等条件刚好等价于向量 ( a 1 , a 2 , . . . , a n ) (a_1,a_2,...,a_n) (a1,a2,...,an) 与向量 ( b 1 , b 2 , . . . , b n ) (b_1,b_2,...,b_n) (b1,b2,...,bn) 共线。

所以,向量形式不失为一种很好的证明柯西不等式的方法。

期望形式

这个不等式就有点意思了
E ( X 2 ) ⋅ E ( Y 2 ) ≥ ∣ E ( X Y ) ∣ ⇒ E ( X 2 ) E ( Y 2 ) ≥ ( E ( X Y ) ) 2 \sqrt{E(X^2)}\cdot\sqrt{E(Y^2)}\geq |E(XY)|\\ \Rightarrow E(X^2)E(Y^2)\geq \big(E(XY)\big)^2 E(X2) E(Y2) E(XY)E(X2)E(Y2)(E(XY))2

证明过程非常不一样,与传统柯西不等式并没扯上关联。

定义一个二次函数: y = E ( X 2 ) t 2 + 2 E ( X Y ) t + E ( Y 2 ) y=E(X^2)t^2+2E(XY)t+E(Y^2) y=E(X2)t2+2E(XY)t+E(Y2) ,不难发现
y = E ( X 2 t 2 ) + E ( 2 X Y t ) + E ( Y 2 ) = E ( ( X t ) 2 + 2 ( X t ) Y + Y 2 ) = E ( ( X t + Y ) 2 ) ≥ 0 y=E(X^2t^2)+E(2XYt)+E(Y^2)=E\big((Xt)^2+2(Xt)Y+Y^2\big)\\ =E\left(\big(Xt+Y\big)^2\right)\geq0 y=E(X2t2)+E(2XYt)+E(Y2)=E((Xt)2+2(Xt)Y+Y2)=E((Xt+Y)2)0

一个二次函数大于等于 0 ,说明 Δ ≤ 0 \Delta\leq0 Δ0 ,而
Δ = ( 2 E ( X Y ) ) 2 − 4 ⋅ E ( X 2 ) E ( Y 2 ) \Delta=\big(2E(XY)\big)^2-4\cdot E(X^2)E(Y^2) Δ=(2E(XY))24E(X2)E(Y2)

所以
4 ( E ( X Y ) ) 2 − 4 ⋅ E ( X 2 ) E ( Y 2 ) ≤ 0 ⇒ E ( X 2 ) E ( Y 2 ) ≥ ( E ( X Y ) ) 2 4\big(E(XY)\big)^2-4\cdot E(X^2)E(Y^2)\leq0\\ \Rightarrow E(X^2)E(Y^2)\geq\big(E(XY)\big)^2 4(E(XY))24E(X2)E(Y2)0E(X2)E(Y2)(E(XY))2

至于取等条件,有些玄学。根据式子,取等时 ( X t + Y ) = 0 (Xt+Y)=0 (Xt+Y)=0 ,也就是 X , Y X,Y X,Y 要成固定常数倍关系(或其中一方为 0)。其中一个为 0 可以理解,因为 Y Y Y 取 0 时对方不论取什么都存在 t = 0 t=0 t=0 使之成立。但是倍数关系,真的可能吗? X , Y X,Y X,Y 都是随机变量,两个都随机取,一个刚好是另一个的 λ \lambda λ 倍的概率并不是 100 % \tt100\% 100% 吧?

看来,要么是 X , Y X,Y X,Y 并不彼此独立,要么是我见识浅了。

积分形式

( ∫ f 2 ( x ) d x ) ⋅ ( ∫ g 2 ( x ) d x ) ≥ ( ∫ f ( x ) g ( x ) d x ) 2 \left(\int f^2(x)dx\right)\cdot\left(\int g^2(x)dx\right)\geq\left(\int f(x)g(x)dx\right)^2 (f2(x)dx)(g2(x)dx)(f(x)g(x)dx)2

其实,用微元法,可以发现它就是柯西不等式的二维展开形式。

当然,也可以用期望形式一样的方法,用构造二次函数去证明。

既然本质就是二位展开形式,那么取等条件就是 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 线性相关了,也就是有 ∀ x , f ( x ) = λ g ( x ) \forall x,f(x)=\lambda g(x) x,f(x)=λg(x) ∀ x , g ( x ) = λ f ( x ) \forall x,g(x)=\lambda f(x) x,g(x)=λf(x) 成立。

数论结论

缩系元素求积

N N N 的缩系为 S S S ,求 ∏ x ∈ S x m o d    N \prod_{x\in S} x\mod N xSxmodN ,或者说
∏ x < N x [ g c d ( x , N ) = 1 ] m o d    N \prod_{x<N}x^{[gcd(x,N)=1]}\mod N x<Nx[gcd(x,N)=1]modN

分情况讨论:


如果 N N N 有原根,取一个原根为 g g g ,由原根的定义,以及原根存在逆元,可以得出 S = { g i ∣ 1 ≤ i ≤ φ ( N ) } S=\{g^i|1\leq i\leqφ(N)\} S={gi1iφ(N)} ,那么原式就等于
∏ i = 1 φ ( N ) g i ≡ g ( φ ( N ) + 1 ) φ ( N ) 2 ≡ ( g φ ( N ) + 1 ) φ ( N ) 2 ≡ g φ ( N ) 2 \prod_{i=1}^{φ(N)} g^i\equiv g^{\frac{(φ(N)+1)φ(N)}{2}}\equiv \left(g^{φ(N)+1}\right)^{\frac{φ(N)}{2}}\equiv g^{\frac{φ(N)}{2}} i=1φ(N)gig2(φ(N)+1)φ(N)(gφ(N)+1)2φ(N)g2φ(N)

由于 g φ ( N ) ≡ 1 g^{φ(N)}\equiv1 gφ(N)1 ,且 g g g 是原根,所以 g φ ( N ) 2 g^{\frac{φ(N)}{2}} g2φ(N) 不可能为 1,只能为 -1。故对于 N N N 存在原根的情况,
∏ x ∈ S x ≡ − 1     ( m o d   N ) \prod_{x\in S}x\equiv -1~~~({\rm mod}~N) xSx1   (mod N)


如果 N N N 无原根怎么办?首先解决 N = 2 k N=2^k N=2k 的问题。

1 , 2 , 4 1,2,4 1,2,4 都有原根,不必说了。当 N ≥ 8 N\geq8 N8 时,
∏ x < N x [ g c d ( x , N ) = 1 ] ≡ 1 ∗ 3 ∗ 5 ∗ . . . ∗ ( N − 1 ) ≡ ∏ x < N / 2 x [ g c d ( x , N / 2 ) = 1 ] ∏ x < N / 2 ( − x ) [ g c d ( x , N / 2 ) = 1 ] ≡ ( ∏ x < N / 2 x [ g c d ( x , N / 2 ) = 1 ] ) 2 ⋅ ( − 1 ) φ ( N / 2 ) \prod_{x<N}x^{[gcd(x,N)=1]}\equiv1*3*5*...*(N-1)\equiv \prod_{x<N/2}x^{[gcd(x,N/2)=1]}\prod_{x<N/2}(-x)^{[gcd(x,N/2)=1]}\\ \equiv (\prod_{x<N/2}x^{[gcd(x,N/2)=1]})^2\cdot (-1)^{φ(N/2)} x<Nx[gcd(x,N)=1]135...(N1)x<N/2x[gcd(x,N/2)=1]x<N/2(x)[gcd(x,N/2)=1](x<N/2x[gcd(x,N/2)=1])2(1)φ(N/2)

于是,我们可以从 N = 4 N=4 N=4 的情况一直递推过来,由于 φ ( N ) φ(N) φ(N) 除了 2 以外都是偶数,因此我们得出:
∏ x ∈ S x ≡ 1     ( m o d   N = 2 k ≥ 8 ) \prod_{x\in S}x\equiv 1~~~({\rm mod}~N=2^k\geq8) xSx1   (mod N=2k8)


对于 N ≠ 2 k N\not=2^k N=2k 的情况,我们进行质因数分解。

N = p 1 w 1 p 2 w 2 . . . p k w k N=p_1^{w_1}p_2^{w_2}...p_k^{w_k} N=p1w1p2w2...pkwk ,不妨设 x i = p i w i x_i=p_i^{w_i} xi=piwi

我们知道 φ ( N ) = ∏ φ ( x i ) φ(N)=\prodφ(x_i) φ(N)=φ(xi) ,因此根据缩系的性质,把 N N N 的缩系 S S S 取模 x i x_i xi 后变为可重集,就相当于 x i x_i xi 的缩系中每个元素重复 φ ( N ) φ ( x i ) \frac{φ(N)}{φ(x_i)} φ(xi)φ(N) 次。

F ( N ) = ∏ x < N x [ g c d ( x , N ) = 1 ] m o d    N F(N)=\prod_{x<N}x^{[gcd(x,N)=1]}\mod N F(N)=x<Nx[gcd(x,N)=1]modN ,那么
{ F ( N ) ≡ F ( x 1 ) φ ( N ) φ ( x 1 )    m o d    x 1 F ( N ) ≡ F ( x 2 ) φ ( N ) φ ( x 2 )    m o d    x 2 … F ( N ) ≡ F ( x k ) φ ( N ) φ ( x k )    m o d    x k \begin{cases} F(N)\equiv F(x_1)^{\frac{φ(N)}{φ(x_1)}}~~\mod x_1\\ F(N)\equiv F(x_2)^{\frac{φ(N)}{φ(x_2)}}~~\mod x_2\\ \ldots\\ F(N)\equiv F(x_k)^{\frac{φ(N)}{φ(x_k)}}~~\mod x_k\\ \end{cases} F(N)F(x1)φ(x1)φ(N)  modx1F(N)F(x2)φ(x2)φ(N)  modx2F(N)F(xk)φ(xk)φ(N)  modxk

由于 x i x_i xi 要么是 2 k 2^k 2k ,要么有原根,因此 F ( x i ) 2 = 1 F(x_i)^2=1 F(xi)2=1 ,再根据 φ φ φ 的奇偶性( N N N 不为 2 p 2p 2p, 所以 φ ( N ) φ ( x i ) \frac{φ(N)}{φ(x_i)} φ(xi)φ(N) 都是偶数),不难得出上面的线性同余方程其实就是
{ F ( N ) ≡ 1    m o d    x 1 F ( N ) ≡ 1    m o d    x 2 … F ( N ) ≡ 1    m o d    x k \begin{cases} F(N)\equiv 1~~\mod x_1\\ F(N)\equiv 1~~\mod x_2\\ \ldots\\ F(N)\equiv 1~~\mod x_k\\ \end{cases} F(N)1  modx1F(N)1  modx2F(N)1  modxk

用中国剩余定理合并起来,会得到 F ( N ) = 1 F(N)=1 F(N)=1 的结论。


综上, ∏ x < N x [ g c d ( x , N ) = 1 ] m o d    N \prod_{x<N}x^{[gcd(x,N)=1]}\mod N x<Nx[gcd(x,N)=1]modN N N N 有原根时同余于 -1 ,否则为 1 。

因数闭合序列矩阵

若一个正整数集合中每个数的所有因数都同在这个集合里,那么称这个集合是因数闭合的。

把这个集合中的元素从小到大放入序列 a a a ,序列大小为 n n n

n × n n\times n n×n 的矩阵 A A A 中, A i , j = g c d ( a i , a j ) A_{i,j}={\rm gcd}(a_i,a_j) Ai,j=gcd(ai,aj)

那么 d e t ( A ) {\rm det}(A) det(A) 等于多少呢?


用构造矩阵的方法求这个行列式。我们构造两个 n × n n\times n n×n 的矩阵:
G i , j = { ϕ ( a j ) , a j ∣ a i 0 , a j  ⁣ ⁣ ⁣ ∤ a i H i , j = { 1 , a i ∣ a j 0 , a i  ⁣ ⁣ ⁣ ∤ a j G_{i,j}= \begin{cases} {\rm \phi}(a_j) ,& a_j|a_i\\ 0,& a_j\!\!\!\not|a_i \end{cases}\\ H_{i,j}= \begin{cases} 1 ,& a_i|a_j\\ 0,& a_i\!\!\!\not|a_j \end{cases} Gi,j={ϕ(aj),0,ajaiajaiHi,j={1,0,aiajaiaj

那么两矩阵的乘积:
∑ k = 1 n G i , k ⋅ H k , j = ∑ k = 1 n ϕ ( a k ) [ a k ∣ a i ] [ a k ∣ a j ] = ∑ a k ∣ g c d ( a i , a j ) ϕ ( a k ) = g c d ( a i , a j ) = A i , j \sum_{k=1}^{n}G_{i,k}\cdot H_{k,j}=\sum_{k=1}^{n}\phi(a_k)[a_k|a_i][a_k|a_j]=\sum_{a_k|{\rm gcd}(a_i,a_j)}\phi(a_k)={\rm gcd}(a_i,a_j)=A_{i,j} k=1nGi,kHk,j=k=1nϕ(ak)[akai][akaj]=akgcd(ai,aj)ϕ(ak)=gcd(ai,aj)=Ai,j

可得
A = G ⋅ H A=G\cdot H A=GH

不难发现, G G G H H H 都是下三角矩阵,因此
det ⁡ ( A ) = det ⁡ ( G ) ⋅ det ⁡ ( H ) = ∏ i = 1 n ϕ ( a i ) \det(A)=\det(G)\cdot\det(H)=\prod_{i=1}^{n}\phi(a_i) det(A)=det(G)det(H)=i=1nϕ(ai)

Bostan mori(ボスタン-モリ)波斯坦-茉莉 算法

(转)
在这里插入图片描述

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值