【NOIP D区 赛】“CSP 2020” (二分,搜索,剪枝)

题面

你在上 C S P   2020 \bf{CSP~2020} CSP 2020 的赛场前看到了入门组的「优秀的拆分」一题。你觉得他定义的优秀的拆分不够优秀,于是你自己定义了拆分优秀的条件。

定义正整数 x x x 的一个拆分为一个序列,序列中的每个数都是非负整数,且序列中各元素的和为 x x x

对于参数 n n n,你认为一个拆分是优秀的,当且仅当它同时满足以下几点:

  • 它是 n 3 n^3 n3 的一个拆分;
  • 拆分中的每个数都不大于 9 9 9

你把一个优秀的拆分中的每个数从前到后作为一个十进制数的高位到低位,可以得到一个「优秀的数」。将所有优秀的数去重(前导零会导致重复),从小到大排序,第 n 4 n^4 n4 个数是「完美」的。

例如 n = 2 n = 2 n=2 时, 8 , 17 , 26 , 35 , 44 , 53 , 62 , 71 , 80 , 107 , 116 , 125 , 134 , 143 , 152 , 161 , ⋅ ⋅ ⋅ 8, 17, 26, 35, 44, 53, 62, 71, 80, 107, 116, 125, 134, 143, 152, 161, · · · 8,17,26,35,44,53,62,71,80,107,116,125,134,143,152,161, 都是优秀的数,其中 161 161 161 是完美的。

现在给定 m m m,你希望对 1 ≤ i ≤ m 1 ≤ i ≤ m 1im 的所有正整数 i i i 求出 n = i n = i n=i 时的完美的数。由于答案可能很大,你需要对给定的 p p p 取模。

1 ≤ m ≤ 1000 , 2 ≤ p ≤ 1 0 9 + 9 1\leq m\leq 1000,2\leq p\leq 10^9+9 1m1000,2p109+9

样例

5 1000000007
1 161 6966 59899897 997690006

题解

这种数字位数过多的第 k 小问题一般按位 “ 二分 ”解决。

比如这道题, k = n 4 k=n^4 k=n4 。当我们从大到小枚举到 1 0 x 10^x 10x 位时,我们需要快速知道这一位选某个值时,剩下的 x x x 位共有多少方案,以便判断是否超出 k 。


此时相当于 x x x 个盒子要放 y y y 个小球,每个盒子可以空,但是不能超过 9 个球,

这是个经典的容斥,不难得出方案数为
f ( x , y ) = ∑ i = 0 y / 10 ( − 1 ) i ( x + ( y − 10 i ) − 1 y − 10 i ) ( x i ) f(x,y)=\sum_{i=0}^{y/10}(-1)^i{x+(y-10i)-1\choose y-10i}{x\choose i} f(x,y)=i=0y/10(1)i(y10ix+(y10i)1)(ix)

接下来,如果这个数过大怎么办?

肯定不能取模,因为我们要比较大小。

我们可以在每一步计算上与 i n f inf inf 取较小值。但是这样还是有两个问题,首先有减法,然后这样求的时间复杂度还是太大。

我们发现,过程中的每一步的计算的数量级不会比最终答案大,因此,如果过程中某一步的组合数,或者累加的答案已经到达 i n f inf inf ,可以直接返回 i n f inf inf 。同时,我们可以让 y = min ⁡ ( y , 9 x − y ) y=\min(y,9x-y) y=min(y,9xy) ,如果超出某一阈值(我随便定了个 100),也可以直接返回 i n f inf inf

为了算法正确, i n f inf inf 必须比 n 4 ( 1 0 12 ) n^4(10^{12}) n4(1012) 大许多, i n f = 1 0 16 inf=10^{16} inf=1016 就差不多了。

于是,乐观估计,这一部分的复杂度为 O ( log ⁡ ( . . . ) ) O(\log(...)) O(log(...))


我们先二分出当前最高位,满足这一位选 0 时剩下位数方案数 k k k 以内,然后枚举这一位是多少,同时令 k k k 减去比当前数小的方案数(此时一定不会到达 i n f inf inf,放心减),让数字和 m m m 减去当前位数字。然后考虑下一位。

这样还是会超时,因为总的数位还是太多了,极限数据 n = 1000 n=1000 n=1000 时有上亿位。但是我们发现,这样小于 9 的位数会非常少,因此我们再想个办法跳过连续的 9 就好了。

设当前位置为 i i i ,二分的空降位置为 j ( j < i ) j(j<i) j(j<i) ,如果 f ( i , m ) − f ( j , m − 9 ( i − j ) ) < k f(i,m)-f(j,m-9(i-j))<k f(i,m)f(j,m9(ij))<k ,那么就可以空降到 j j j ,顺便减小 k k k m m m 。因为当前位置已经保证了 f ( i − 1 , m ) < k f(i-1,m)<k f(i1,m)<k ,所以大概率 f ( i , m ) f(i,m) f(i,m) 到不了 i n f inf inf

CODE

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<random>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 1005
#define LL long long
#define ULL unsigned long long
#define DB double
#define lowbit(x) (-(x) & (x))
#define ENDL putchar('\n')
#define FI first
#define SE second
int xchar() {
	static const int maxn = 1000000;
	static char b[maxn];
	static int pos = 0,len = 0;
	if(pos == len) pos = 0,len = fread(b,1,maxn,stdin);
	if(pos == len) return -1;
	return b[pos ++];
}
//#define getchar xchar
LL read() {
    LL f=1,x=0;int s = getchar(); 
    while(s < '0' || s > '9') {if(s<0)return -1;if(s=='-')f=-f;s = getchar();}
    while(s >= '0' && s <= '9') {x = (x<<3) + (x<<1) + (s^48); s = getchar();}
    return f*x;
}
void putpos(LL x) {if(!x)return ;putpos(x/10);putchar('0'+(x%10));}
void putnum(LL x) {
    if(!x) {putchar('0');return ;}
    if(x<0) {putchar('-');x = -x;}
    return putpos(x);
}
void AIput(LL x,int c) {putnum(x);putchar(c);}

int MOD = 1;
int n,m,s,o,k;
const LL MX = 1e14;
int qkpow(int a,int b,int MOD) {
	int res = 1;
	while(b > 0) {
		if(b & 1) res = res *1ll* a % MOD;
		a = a *1ll* a % MOD; b >>= 1;
	}return res;
}
LL C(LL n,int m) {
	m = min(n-m,(LL)m);
	LL rs = 1;
	for(int i = 1;i <= m;i ++) {
		LL A = n-i+1,B = i;
		if(rs > MX*B/A) return MX;
		rs = rs*A/B;
	}return rs;
}
LL calc(LL n,LL m) {
	m = min(m,n*9 - m);
	if(m < 0) return 0;
	if(m >= 78) return MX;
	LL rs = 0,A = 1,B = 1;
	static LL cc[100];
	cc[0] = 1;
	for(int i = 1;i*10 <= m;i ++) {
		LL aa = n-i+1,bb = i;
		if(cc[i-1] > MX*bb/aa) return MX;
		cc[i] = cc[i-1]*aa/bb;
	}
	for(int i = m;i >= 0;i --) {
		LL aa = n+m-i-1,bb = m-i;
		if(bb) {
			if(A > MX*bb/aa) return MX;
			A = A*aa/bb;
		}
		if(i%10) continue;
		B = cc[i/10];
		if(A > MX/B) return MX;
		if((i/10)&1) rs -= A*B;
		else rs += A*B;
	}return rs;
}
const LL MX2 = 1e16;
LL calc2(LL n,LL m) {
	m = min(m,n*9 - m);
	if(m < 0) return 0;
	if(m >= 108) return MX2;
	LL rs = 0,A = 1,B = 1;
	static LL cc[100];
	cc[0] = 1;
	for(int i = 1;i*10 <= m;i ++) {
		LL aa = n-i+1,bb = i;
		if(cc[i-1] > MX2/aa*bb) return MX2;
		cc[i] = cc[i-1]*aa/bb;
	}
	for(int i = m;i >= 0;i --) {
		LL aa = n+m-i-1,bb = m-i;
		if(bb) {
			if(A > MX2/aa*bb) return MX2;
			A = A*aa/bb;
		}
		if(i%10) continue;
		B = cc[i/10];
		if(A > MX2/B) return MX2;
		if((i/10)&1) rs -= A*B;
		else rs += A*B;
	}return rs;
}
int main() {
	freopen("fqccf.in","r",stdin);
	freopen("fqccf.out","w",stdout);
	m = read(); MOD = read();
	for(n = 1;n <= m;n ++) {
		int nn = n*n*n,ans = 0;
		LL n2 = n*1ll*nn;
		int st = nn+1;
		while(n2 > 0 && st > 1) {
			if(st*9ll == nn) {
				(ans += (qkpow(10,st,MOD)+MOD-1)%MOD) %= MOD;
				break;
			}
			if(st*9ll == nn+1) {
				(ans += ((qkpow(10,st,MOD)+MOD-1)%MOD +MOD- qkpow(10,st-n2,MOD))%MOD) %= MOD;
				break;
			}
			int s2 = (nn+8)/9-1;
			for(int i = 29;i >= 0;i --) {
				if(s2+(1<<i) < st && calc(s2+(1<<i),nn) < n2) {
					s2 += (1<<i);
				}
			}
			s2 ++; s2 = min(st-1,s2);
			st = s2;
			LL fl = calc2(s2,nn);
			if(fl < MX2/2) for(int i = 29;i >= 0;i --) {
				if(s2-(1<<i) > 0 && nn-9ll*(st-s2+(1<<i)) >= 0 && fl-calc2(s2-(1<<i),nn-9ll*(st-s2+(1<<i))) < n2) {
					s2 -= (1<<i);
				}
			}
			nn -= (st-s2) * 9;
			n2 -= fl-calc2(s2,nn);
			(ans += (qkpow(10,st,MOD) +MOD- qkpow(10,s2,MOD)) % MOD) %= MOD;
			int pw = qkpow(10,s2-1,MOD);
			LL tmp;
			for(int i = 1;i < 10;i ++) {
				if((tmp = calc(s2-1,nn)) < n2) {
					n2 -= tmp; nn --;
					(ans += pw) %= MOD;
				}
				else break;
			}
			st = s2;
		}
		AIput(ans,' ');
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值