【源自知友】一个图论问题

问题

链接——知乎,有问题,就会有答案

证明一个所有奇环长度都为 3 的无向图 G G G 可以四着色,并构造着色方案。

解法

摘自笔者本人的解答

若所有奇圈的长度都为 3,考虑构造一种方案使 G 四着色,不妨设四种颜色为 0 , 1 , 2 , 3 0,1,2,3 0,1,2,3

我们一定可以找出一个边集 A ⊂ E A\sub E AE ,满足去掉 A A A 中的边后的图可以二染色,且 ∣ A ∣ |A| A 最小,即满足图 G ′ = ( V , ∁ E A ) G'=(V,\complement_EA) G=(V,EA) 不存在奇圈,可以二染色,使得 ∣ A ∣ |A| A 最小。

然后我们对 G ′ G' G 进行二染色,点被染色成白点和黑点。设此次点 i i i 的颜色为 c o l i col_i coli ,那么一定对于 ∀ ( u , v ) ∈ A   ,   c o l u = c o l v \forall (u,v)\in A~,~col_u=col_v (u,v)A , colu=colv,即该边属于一个奇圈 ,否则该边 ( u , v ) (u,v) (u,v) 可从 A A A 中删去,与 ∣ A ∣ |A| A 最小矛盾。

同时,因为不存在奇圈的长度大于 3,所以对于 ∀ ( u , v ) ∈ A \forall (u,v)\in A (u,v)A ( u , v ) (u,v) (u,v) 不属于原图 G G G 的任意一个偶圈。否则,由于偶圈大小为 2 k ( k ≥ 2 ) 2k(k\geq2) 2k(k2),而 ( u , v ) (u,v) (u,v) 两端点之间存在一条长为 2 的路径(它本身属于一个三元圈),所以便会形成一个大小为 2 k − 1 + 2 = 2 k + 1 ≥ 5 2k-1+2=2k+1\geq 5 2k1+2=2k+15 的圈,与题设矛盾。

接下来我们对于 A A A 的图 G ′ ′ = ( V , A ) G''=(V,A) G=(V,A) 再次染色,单独考虑每一个极大联通分量。

我们可以证明,图 G ′ ′ G'' G 是个二分图:假设 G ′ ′ G'' G 中存在一个奇圈 C C C ,我们任取两个不同的边 ( a , b ) , ( c , d ) ∈ C (a,b),(c,d)\in C (a,b),(c,d)C ,那么在原图 G G G 上,点 c c c 和点 d d d 之间也存在一条长度为 2 的路径,因此 ( a , b ) (a,b) (a,b) 同时属于一个长度为 ∣ C ∣ − 1 + 2 |C|-1+2 C1+2 的偶圈中,与上文黑体字矛盾,故假设不成立,图 G ′ ′ G'' G 是个二分图。

是个二分图就可以二染色,由于 ∀ ( u , v ) ∈ A   ,   c o l u = c o l v \forall (u,v)\in A~,~col_u=col_v (u,v)A , colu=colv ,所以每一个极大连通分量内的点的 c o l col col 都是相等的。我们对于所有点 c o l col col 为白色的极大连通分量二染色为 0 , 1 0,1 0,1 ,对所有点 c o l col col 为黑色的极大块连通分量二染色为 2 , 3 2,3 2,3 。令此次染色后点 i i i 的颜色为 c o l o r i color_i colori

这时,满足 ∀ ( u , v ) ∈ E   ,   c o l o r u ≠ c o l o r v \forall (u,v)\in E~,~color_u\not=color_v (u,v)E , coloru=colorv ,四着色完成。

加强

证明貌似更简单:

如何证明若G中所有奇圈的长都为3,则G是4可着色的? - 泥泥的回答 - 知乎

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值