题面


样例
1
4 6
1 2
1 3
1 4
2 3
2 4
3 4
69
样例图


题解
看到这个提示,我们应该大概能猜到用意了。
我们求的其实是最坏情况下的四点共面数,这个期望根本就™没用。
四点共面数好像挺复杂,我们分情况讨论吧:
- 我首先想到,如果两线段在三维空间中平行,那么四个端点一定共面。而中点恰好带来了平行的好条件:中位线。所以第一种情况:四元环的四条边中点——连成两个线段,分别与同一条对角线平行,所以两线段平行,四点共面;在样例中,可惜只有 3 种情况,目前离 69 还差得远。
- 然后我想到,如果存在三点共线,那么随便找一个第四点就能共面了,而三点共线只可能是一整条边。第二种情况:一条边中点&两端点 + 任意一点。这个情况就比较多了,我们只需要随便选 mmm 条边之一,再从 (n+m−3)(n+m-3)(n+m−3) 个点中选一个第四点,m⋅(n+m−3)m\cdot(n+m-3)m⋅(n+m−3) 。样例中有 42 种情况。
- 上一条其实统计了所有“间”的情况(结点+中点+结点),通过有机化学的思路,我们其实早该想想“邻”的情况。这时,我们要保证不与“间”的情况重复,就只能是 “结点+结点+中点+中点” 。此时我们联想到 共用端点的两线段一定是共面的 ,于是,这种类别就对应了一个角。样例中每个点连了三条边,故总计 4⋅C32=124\cdot C_{3}^2=124⋅C32=12 种。
- 四个中点,一个中点,两个中点的情况都讨论了,我们来讨论三个中点的情况。三中点+一结点,只能是在三角形内了。第四种情况:三元环三边中点+三结点之一。样例中共有 12 种。
四个结点是不可能的。
总计 69,和样例一致了,不管了😡。
令三元环个数为 c3c_3c3 ,四元环个数为 c4c_4c4 ,答案就是
c3⋅3+c4+m⋅(n+m−3)+∑x∈VCdeg(x)2
c3\cdot 3+c4+m\cdot (n+m-3)+\sum_{x\in V}C_{deg(x)}^2
c3⋅3+c4+m⋅(n+m−3)+x∈V∑Cdeg(x)2
求三元环个数,我们可以把边重定向,度数小的点连向度数大的点,这样每个点的出度就不超过 m\sqrt mm 。利用这个性质,我们在每个三元环的度数最少结点处统计贡献,先标记一次所有出点,再统计暴力走两步到达标记点的方案数。总时间复杂度 O(mm)O(m\sqrt m)O(mm) 。
求四元环个数,我们可以用类似的思路。我们在每个四元环度数最大结点的对点处统计贡献。对于起点 xxx 枚举走两步到达的点,只不过第一步走原图无向边,第二步走定向图有向边。排除掉度数排名小于等于 xxx 的点,设点 iii 被走到的次数为 wiw_iwi ,那么将产生 Cwi2C_{w_i}^2Cwi2 的贡献。总时间复杂度 O(mm)O(m\sqrt m)O(mm) 。
CODE
#include<map>
#include<set>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<random>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 500005
#define LL long long
#define ULL unsigned long long
#define ENDL putchar('\n')
#define DB double
#define lowbit(x) (-(x) & (x))
#define FI first
#define SE second
int xchar() {
static const int maxn = 1000000;
static char b[maxn];
static int pos = 0,len = 0;
if(pos == len) pos = 0,len = fread(b,1,maxn,stdin);
if(pos == len) return -1;
return b[pos ++];
}
//#define getchar() xchar()
LL read() {
LL f = 1,x = 0;int s = getchar();
while(s < '0' || s > '9') {if(s<0)return -1;if(s=='-')f=-f;s = getchar();}
while(s >= '0' && s <= '9') {x = (x<<1) + (x<<3) + (s^48);s = getchar();}
return f*x;
}
void putpos(LL x) {if(!x)return ;putpos(x/10);putchar((x%10)^48);}
void putnum(LL x) {
if(!x) {putchar('0');return ;}
if(x<0) putchar('-'),x = -x;
return putpos(x);
}
void AIput(LL x,int c) {putnum(x);putchar(c);}
const int MOD = 998244353;
int n,m,s,o,k;
int U[MAXN],V[MAXN];
int hd[MAXN],nx[MAXN<<1],v[MAXN<<1],cne,ind[MAXN];
void ins(int x,int y) {
nx[++ cne] = hd[x];v[cne] = y;hd[x] = cne;ind[y] ++;
}
vector<int> g[MAXN];
int f[MAXN];
bool cmp(int a,int b) {
if(ind[a] != ind[b]) return ind[a] < ind[b];
return a<b;
}
int main() {
freopen("graph.in","r",stdin);
freopen("graph.out","w",stdout);
int T = read();
while(T --) {
n = read();m = read();
cne = 0;
for(int i = 1;i <= n;i ++) hd[i] = 0,ind[i] = 0,g[i].clear();
for(int i = 1;i <= m;i ++) {
U[i] = s = read();V[i] = o = read();
ins(s,o); ins(o,s);
}
for(int i = 1;i <= m;i ++) {
if(U[i] > V[i]) swap(U[i],V[i]);
if(ind[U[i]] > ind[V[i]]) swap(U[i],V[i]);
g[U[i]].push_back(V[i]);
}
LL c3 = 0,c4 = 0;
for(int i = 1;i <= n;i ++) {
for(int y:g[i]) f[y] = 1;
for(int y:g[i]) {
for(int z:g[y]) if(f[z]) c3 ++;
}
for(int y:g[i]) f[y] = 0;
for(int j = hd[i];j;j = nx[j]) {
for(auto y:g[v[j]]) {
if(cmp(i,y)) c4 += f[y],f[y] ++;
}
}
for(int j = hd[i];j;j = nx[j]) {
for(auto y:g[v[j]]) {
f[y] = 0;
}
}
}
LL ans = m*1ll*(n+m-3)%MOD;
for(int i = 1;i <= n;i ++) {
(ans += ind[i] *1ll* (ind[i] - 1)/2 % MOD) %= MOD;
}
ans = (c3*3ll + c4 + ans) % MOD;
AIput(ans,'\n');
}
return 0;
}

本文详细探讨了一种求解最坏情况下的四点共面数的算法,涉及三维空间中线段平行、三点共线、中位线等概念。通过分类讨论,提出四种情况并给出解决方案,包括边中点、结点共面的计数方法。最终,通过数学计算和编程实现,得出解答问题的高效算法,总时间复杂度为O(mm)。
3329

被折叠的 条评论
为什么被折叠?



