【模拟赛】立体几何(图论,三元环计数,四元环计数)

本文详细探讨了一种求解最坏情况下的四点共面数的算法,涉及三维空间中线段平行、三点共线、中位线等概念。通过分类讨论,提出四种情况并给出解决方案,包括边中点、结点共面的计数方法。最终,通过数学计算和编程实现,得出解答问题的高效算法,总时间复杂度为O(mm)。

题面

在这里插入图片描述
在这里插入图片描述
样例

1
4 6
1 2
1 3
1 4
2 3
2 4
3 4
69

样例图

在这里插入图片描述
在这里插入图片描述

题解

看到这个提示,我们应该大概能猜到用意了。

我们求的其实是最坏情况下的四点共面数,这个期望根本就™没用


四点共面数好像挺复杂,我们分情况讨论吧:

  • 我首先想到,如果两线段在三维空间中平行,那么四个端点一定共面。而中点恰好带来了平行的好条件:中位线。所以第一种情况:四元环的四条边中点——连成两个线段,分别与同一条对角线平行,所以两线段平行,四点共面;在样例中,可惜只有 3 种情况,目前离 69 还差得远。
  • 然后我想到,如果存在三点共线,那么随便找一个第四点就能共面了,而三点共线只可能是一整条边。第二种情况:一条边中点&两端点 + 任意一点。这个情况就比较多了,我们只需要随便选 mmm 条边之一,再从 (n+m−3)(n+m-3)(n+m3) 个点中选一个第四点,m⋅(n+m−3)m\cdot(n+m-3)m(n+m3) 。样例中有 42 种情况。
  • 上一条其实统计了所有“间”的情况(结点+中点+结点),通过有机化学的思路,我们其实早该想想“邻”的情况。这时,我们要保证不与“间”的情况重复,就只能是 “结点+结点+中点+中点” 。此时我们联想到 共用端点的两线段一定是共面的 ,于是,这种类别就对应了一个角。样例中每个点连了三条边,故总计 4⋅C32=124\cdot C_{3}^2=124C32=12 种。
  • 四个中点,一个中点,两个中点的情况都讨论了,我们来讨论三个中点的情况。三中点+一结点,只能是在三角形内了。第四种情况:三元环三边中点+三结点之一。样例中共有 12 种。

四个结点是不可能的。

总计 69,和样例一致了,不管了😡。

令三元环个数为 c3c_3c3 ,四元环个数为 c4c_4c4 ,答案就是
c3⋅3+c4+m⋅(n+m−3)+∑x∈VCdeg(x)2 c3\cdot 3+c4+m\cdot (n+m-3)+\sum_{x\in V}C_{deg(x)}^2 c33+c4+m(n+m3)+xVCdeg(x)2

求三元环个数,我们可以把边重定向,度数小的点连向度数大的点,这样每个点的出度就不超过 m\sqrt mm 。利用这个性质,我们在每个三元环的度数最少结点处统计贡献,先标记一次所有出点,再统计暴力走两步到达标记点的方案数。总时间复杂度 O(mm)O(m\sqrt m)O(mm)

求四元环个数,我们可以用类似的思路。我们在每个四元环度数最大结点的对点处统计贡献。对于起点 xxx 枚举走两步到达的点,只不过第一步走原图无向边,第二步走定向图有向边。排除掉度数排名小于等于 xxx 的点,设点 iii 被走到的次数为 wiw_iwi ,那么将产生 Cwi2C_{w_i}^2Cwi2 的贡献。总时间复杂度 O(mm)O(m\sqrt m)O(mm)

CODE

#include<map>
#include<set>
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<random>
#include<bitset>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 500005
#define LL long long
#define ULL unsigned long long
#define ENDL putchar('\n')
#define DB double
#define lowbit(x) (-(x) & (x))
#define FI first
#define SE second
int xchar() {
	static const int maxn = 1000000;
	static char b[maxn];
	static int pos = 0,len = 0;
	if(pos == len) pos = 0,len = fread(b,1,maxn,stdin);
	if(pos == len) return -1;
	return b[pos ++];
}
//#define getchar() xchar()
LL read() {
	LL f = 1,x = 0;int s = getchar();
	while(s < '0' || s > '9') {if(s<0)return -1;if(s=='-')f=-f;s = getchar();}
	while(s >= '0' && s <= '9') {x = (x<<1) + (x<<3) + (s^48);s = getchar();}
	return f*x;
}
void putpos(LL x) {if(!x)return ;putpos(x/10);putchar((x%10)^48);}
void putnum(LL x) {
	if(!x) {putchar('0');return ;}
	if(x<0) putchar('-'),x = -x;
	return putpos(x);
}
void AIput(LL x,int c) {putnum(x);putchar(c);}

const int MOD = 998244353;
int n,m,s,o,k;
int U[MAXN],V[MAXN];
int hd[MAXN],nx[MAXN<<1],v[MAXN<<1],cne,ind[MAXN];
void ins(int x,int y) {
	nx[++ cne] = hd[x];v[cne] = y;hd[x] = cne;ind[y] ++;
}
vector<int> g[MAXN];
int f[MAXN];
bool cmp(int a,int b) {
	if(ind[a] != ind[b]) return ind[a] < ind[b];
	return a<b;
}
int main() {
    freopen("graph.in","r",stdin);
    freopen("graph.out","w",stdout);
    int T = read();
	while(T --) {
		n = read();m = read();
		cne = 0;
		for(int i = 1;i <= n;i ++) hd[i] = 0,ind[i] = 0,g[i].clear();
		for(int i = 1;i <= m;i ++) {
			U[i] = s = read();V[i] = o = read();
			ins(s,o); ins(o,s);
		}
		for(int i = 1;i <= m;i ++) {
			if(U[i] > V[i]) swap(U[i],V[i]);
			if(ind[U[i]] > ind[V[i]]) swap(U[i],V[i]);
			g[U[i]].push_back(V[i]);
		}
		LL c3 = 0,c4 = 0;
		for(int i = 1;i <= n;i ++) {
			for(int y:g[i]) f[y] = 1;
			for(int y:g[i]) {
				for(int z:g[y]) if(f[z]) c3 ++;
			}
			for(int y:g[i]) f[y] = 0;

			for(int j = hd[i];j;j = nx[j]) {
				for(auto y:g[v[j]]) {
					if(cmp(i,y)) c4 += f[y],f[y] ++;
				}
			}
			for(int j = hd[i];j;j = nx[j]) {
				for(auto y:g[v[j]]) {
					f[y] = 0;
				}
			}
		}
		LL ans = m*1ll*(n+m-3)%MOD;
		for(int i = 1;i <= n;i ++) {
			(ans += ind[i] *1ll* (ind[i] - 1)/2 % MOD) %= MOD;
		}
		ans = (c3*3ll + c4 + ans) % MOD;
		AIput(ans,'\n');
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值