基本介绍
布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量(位图)和一系列随机映射函数(哈希函数)。
布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率和删除困难。
应用场景
需要判断某个数据是否在集合中,同时内存不够且检索速度慢的情况下,不妨考虑下布隆过滤器,但业务上要可以忍受判断失误率。
如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表、树、散列表(又叫哈希表,Hash table)等等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间越来越大。同时检索速度也越来越慢。
核心思想
当一个元素被加入集合时,通过K个Hash函数将这个元素映射成一个位数组(bitmap,这个数组中每一个位置只占有1个bit,而每个bit只有0和1两种状态)中的K个点,把它们置为1。检索时,我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了:如果这些点有任何一个0,则被检元素一定不在;如果都是1,则被检元素很可能在。(由于当输入对象过多,而位数组也就是bitmap过小,则会出现大部分为黑的情况,那样就容易发生误判!因此使用布隆过滤器是需要容忍错误率的。)
布隆过滤器重要参数计算
通过上面的描述,我们可以知道,如果输入量过大,而bitarray空间的大小又很小,那么误判率就会上升。那么bitarray空间大小怎么确定呢?可以根据以下推导公式计算
假设输入对象个数为n
,bitmap
大小(也就是布隆过滤器大小)为m
,所容忍的误判率p
和哈希函数的个数k
。计算公式如下:(小数向上取整)
m = − n ∗ l n p ( l n 2 ) 2 m =- \frac{n*lnp}{{(ln2)}^2} m=−(ln2)2n∗lnp
k = l n 2 ∗ m n = 0.7 ∗ m n k=ln2*\frac{m}{n}=0.7*\frac{m}{n} k=ln2∗nm=0.7∗nm
p = ( 1 − e − n k m ) k p=(1-e^{-\frac{nk}{m}})^{k} p=(1−e−mnk)k
注意:由于我们计算的m和k可能是小数,那么需要经过向上取整,此时需要重新计算误判率p!
参考:
- https://zhuanlan.zhihu.com/p/72378274
- https://blog.csdn.net/fouy_yun/article/details/81075432#%E5%B8%83%E9%9A%86%E8%BF%87%E6%BB%A4%E5%99%A8