1 题目
输入一棵二叉树和一个整数,打印出二叉树中节点值的和为输入整数的所有路径。从树的根节点开始往下一直到叶节点所经过的节点形成一条路径。
示例:
给定如下二叉树,以及目标和 sum = 22,
5
/ \
4 8
/ / \
11 13 4
/ \ / \
7 2 5 1
返回:
[
[5,4,11,2],
[5,8,4,5]
]
提示:
节点总数 <= 10000
注意:本题与主站 113 题相同:https://leetcode-cn.com/problems/path-sum-ii/
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/er-cha-shu-zhong-he-wei-mou-yi-zhi-de-lu-jing-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
2 Java
递归思路:有孩子就往下,没孩子说明到叶节点了,看路径是否满足要求,满足就计入答案,不满足就退回
切记退回时刻需要将list最后一个元素弹出
2.1 方法一(典型错误,浅拷贝导致)
思路:用成员变量ans记录最终结果;helper方法的全局变量list,记录路径,若路径符合条件,将路径计入ans
错误:由于ans仅仅是和list指向同一空间,list在向根节点一级一级返回的过程中,remove的同时导致ans也清空了,最后ans啥都没有
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
List<List<Integer>> ans = new LinkedList<List<Integer>>();
public List<List<Integer>> pathSum(TreeNode root, int sum) {
List<Integer> list = new LinkedList<>();
helper(root, sum, list);
return ans;
}
public void helper(TreeNode root, int sum, List<Integer> list){
if(root == null) return;
list.add(root.val);
if(root.left != null) helper(root.left, sum - root.val, list);
if(root.right != null) helper(root.right, sum - root.val, list);
if(root.left == null && root.right == null && root.val == sum) ans.add(list); // 错误!!!
list.remove(list.size() - 1);
}
}
利用集合的构造函数深拷贝
修改后:
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
List<List<Integer>> ans = new LinkedList<List<Integer>>();
public List<List<Integer>> pathSum(TreeNode root, int sum) {
List<Integer> list = new LinkedList<>();
helper(root, sum, list);
return ans;
}
public void helper(TreeNode root, int sum, List<Integer> list){
if(root == null) return;
list.add(root.val);
if(root.left != null) helper(root.left, sum - root.val, list);
if(root.right != null) helper(root.right, sum - root.val, list);
if(root.left == null && root.right == null && root.val == sum) ans.add(new LinkedList<Integer>(list));
list.remove(list.size() - 1);
}
}
进一步思考成员变量、方法外局域变量、方法内局域变量,三者各自与递归方法的关系:
方法内局域变量:只有作为返回值才能跨层记录结果,且仅能跨一层。记录or操作下层返回值,并在处理后作为返回值返回上层
方法外局域变量:相当于全局变量,可跨多层记录结果,但必须作为递归方法的参数才能使用
成员变量:完完全全的全局变量,可跨多层记录结果,直接用无限制
总结:
1从叶节点逐步向上扩展结果,最终到根节点时得到答案,且当答案只有一个(非集合,比如前中后序遍历),使用方法内局域变量
2从根节点逐步向下扩展结果,最终到叶节点时得到答案,且当答案有多个(集合的形式,比如 面试题34. 二叉树中和为某一值的路径),使用成员变量or方法外局域变量
3方法外局域变量和成员变量对于递归函数的意义差不多,直接用成员变量就好,也省去了方法外局域变量作为参数传递的过程
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
List<List<Integer>> ans = new LinkedList<List<Integer>>();
List<Integer> list = new LinkedList<>();
public List<List<Integer>> pathSum(TreeNode root, int sum) {
if(root == null) return ans;
list.add(root.val);
if(root.left != null) pathSum(root.left, sum - root.val);
if(root.right != null) pathSum(root.right, sum - root.val);
if(root.left == null && root.right == null && root.val == sum) ans.add(new LinkedList<Integer>(list));
list.remove(list.size() - 1);
return ans;
}
}
3 三刷
3.1 方法一(代码少,不易理解)
基本也是回溯框架,if + for
只是在 if 之前,需要先操作当前节点,即将当前节点加入路径,再 if 判断路径是否为解
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> pathSum(TreeNode root, int sum) {
// 解决特殊情况
if(root == null) return listList;
helper(root, sum, 0);
return listList;
}
List<List<Integer>> listList = new ArrayList<>();
List<Integer> list = new ArrayList<>();
public void helper(TreeNode root, int sum, int curSum){
list.add(root.val);
curSum += root.val;
// if是否记录路径(当前路径是否为解);注意判断条件是左右子树皆为null,不是root为null!!!
if(curSum == sum && root.left == null && root.right == null) listList.add(new ArrayList<>(list));
// for多路选择(到哪个状态去)
// 做选择
if(root.left != null) helper(root.left, sum, curSum);
if(root.right != null) helper(root.right, sum, curSum);
// 撤销选择
list.remove(list.size() - 1);
// curSum -= root.val; // 注,int类型不需要撤销选择!!!
}
// 错误;这样会得到重复结果,每个路径都会被记录两遍,因为每次是root为null判断,叶节点左右两个null节点都会记录一遍
public void helper1(TreeNode root, int sum, int curSum){
if(root == null){
if(curSum == sum) listList.add(new ArrayList<>(list));
return;
}
list.add(root.val);
helper(root.left, sum, curSum + root.val);
helper(root.right, sum, curSum + root.val);
list.remove(list.size() - 1);
}
}
3.2 方法二(好理解,回溯框架)
这个方法是在进入下一层递归方法之前,先将该节点加入路径
递归方法开始时,直接判断当前路径是否满足条件
if 是否记录路径
for 多路选择
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> pathSum(TreeNode root, int sum) {
// 处理特殊情况
if(root == null) return listList;
// 先将root加入路径,再进入递归
list.add(root.val);
helper(root, sum, root.val);
return listList;
}
List<List<Integer>> listList = new ArrayList<>();
List<Integer> list = new ArrayList<>();
public void helper(TreeNode root, int sum, int curSum){
// if是否记录路径(当前路径是否为解);先判断是否到叶节点 条件:左右子树皆为null,不是root为null!!!
if(root.left == null && root.right == null){
// 再判断路径是否为解
if(curSum == sum) listList.add(new ArrayList<>(list));
return;
}
// for多路选择(到哪个状态去)
if(root.left != null){
// 做选择
list.add(root.left.val);
helper(root.left, sum, curSum + root.left.val);
// 撤销选择
list.remove(list.size() - 1);
}
if(root.right != null){
// 做选择
list.add(root.right.val);
helper(root.right, sum, curSum + root.right.val);
// 撤销选择
list.remove(list.size() - 1);
}
}
}
4 四刷
4.1 方法一(回溯递归;本层操作本层做)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> pathSum(TreeNode root, int sum) {
helper(root, sum, 0);
return listList;
}
List<List<Integer>> listList = new ArrayList<>();
List<Integer> list = new ArrayList<>();
public void helper(TreeNode root, int sum, int curSum){
// if出口
if(root == null) return;
// 做选择
curSum += root.val;
list.add(root.val);
// if判断,是否记录路径(当前路径是否为解)
// 注:判断是否到叶节点的条件:左右子树皆为null,不是root为null!!!
if(root.left == null && root.right == null){
if(curSum == sum) listList.add(new ArrayList<>(list));
}
// for多路选择(到哪个状态去)
helper(root.left, sum, curSum);
helper(root.right, sum, curSum);
// 撤销选择
list.remove(list.size() - 1);
}
}
4.2 方法二(回溯递归,本层操作本层做,全部成员变量)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> pathSum(TreeNode root, int sum) {
helper(root, sum);
return listList;
}
List<List<Integer>> listList = new ArrayList<>();
List<Integer> list = new ArrayList<>();
int curSum;
public void helper(TreeNode root, int sum){
// if出口
if(root == null) return;
// 做选择
curSum += root.val;
list.add(root.val);
// if判断,是否记录路径(当前路径是否为解)
// 注:判断是否到叶节点的条件:左右子树皆为null,不是root为null!!!
if(root.left == null && root.right == null){
if(curSum == sum) listList.add(new ArrayList<>(list));
}
// for多路选择(到哪个状态去)
helper(root.left, sum);
helper(root.right, sum);
// 撤销选择
curSum -= root.val;
list.remove(list.size() - 1);
}
}