栈与队列算法设计:(3)八皇后问题

1.题目

  八皇后问题是19世纪著名的数学家高斯于1850年提出的,问题是:在8X8的国际象棋上摆放8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列和同一斜线上。设计算法实现八皇后问题的求解。
在这里插入图片描述

2.题目分析

  1.为了解决八皇后问题,我们这里使用栈和递归的结合。
   首先,我们构建出一个8X8的棋盘,这里选择二维数组保存每个格子,并且所有格子的值初始化为0。接着,我们从棋盘的第一行开始,首先放置一号皇后,同时,该皇后也拥有它的攻击区域,即第一行、第一列和该皇后所在的一条斜线。然后,我们继续观察第二行,在一号皇后的攻击范围外,我们选择一个位置,放置二号皇后,二号皇后同时也生成它的攻击区域。重复上述操作,同时,我们将每一行放置的皇后对应的列数压入到栈中保存,用于放置下一个皇后时判断其有效放置范围,最后直到不能放置皇后。
   这时可能会产生两种结果:(1)放置完八个皇后,形成一个解。(2)无法放置皇后且未放置完八个皇后,即如图4所示的结果。

在这里插入图片描述
在这里插入图片描述
  2.第二步,在我们无法放置皇后且未放满时,我们选择弹出栈顶元素,回到指定行,选择该行下一个可以放置皇后的列,继续进行放置,同时将该有效列的值压入栈中保存,继续重复步骤1的循环,直到不能放置为止,最后生成所有解。
在这里插入图片描述
  3.最后,每生成一个解,我们弹出栈中的所有元素,这些元素则对应着一个完整解中每行放置的皇后对应的列数,我们根据这些列数来修改二维数组中的值进行输出。
在这里插入图片描述

3.参考代码

#include<Windows.h>
#include <iostream>
#include<tchar.h>
#include<math.h>
using namespace std;

#define MaxSize 8
#define StackSize 10


int Count = 0;

//存放每行放置的每个皇后的列数
typedef struct CHESSSTACK
{
	int Position[StackSize];
	int Top;
}ChessStack,*PChessStack;

//压栈操作
BOOL PushData(ChessStack &ChessStack, int Data)
{
	if (ChessStack.Top == StackSize - 1)
	{
		return FALSE;
	}
	else
	{
		ChessStack.Top++;
		ChessStack.Position[ChessStack.Top] = Data;
		return TRUE;
	}
}

//出栈操作
int PopData(ChessStack &ChessStack)
{
	if (ChessStack.Top == -1)
	{
		return -1;
	}
	else
	{
		int v1 = ChessStack.Position[ChessStack.Top];
		ChessStack.Position[ChessStack.Top] = 0;
		ChessStack.Top--;
		return v1;
	}
}

//判断棋盘的某个格子是否是危险区域
BOOL IsDangerArea(ChessStack ChessStack, int Row, int Col)
{
	int i = 0;
	//依次查看栈中的每一个皇后对应的危险区域
	while (i <= ChessStack.Top)
	{
	    //该个格子是否和所查看格子在同一行、同一列或同一斜线
		if ((Col == ChessStack.Position[i]) || abs(Row - i) == abs(Col - ChessStack.Position[i]))
		{
			return TRUE;
		}
		else
		{
			i++;
		}
	}
	return FALSE;
	
}
//输出一个正确解法
void TravelStack(ChessStack ChessStack, int Count)
{
	int i = 0;
	int j = 0;
	int Chess[MaxSize][MaxSize] = { 0 };
	printf("第%d种解法:\r\n", Count);
	for (i = 0; i < MaxSize; i++)
	{
		int v1 = ChessStack.Position[i];
		Chess[i][v1] = 1;
	}

	for (i = 0; i < MaxSize; i++)
	{
		for (j = 0; j < MaxSize; j++)
		{
			printf("%d ", Chess[i][j]);
		}
		printf("\r\n");
	}
	printf("\r\n");
}


void EightQueen(ChessStack &ChessStack, int Row)
{
	int Col = 0;
	//循环当前行的每一列
	for (Col = 0; Col < MaxSize; Col++)
	{
	    //先判断当前格子是否是危险区域,如果不是危险区域,则放置皇后,对应列值压入栈中
		if (IsDangerArea(ChessStack, Row, Col) == FALSE)
		{
			PushData(ChessStack, Col);
			Row++;
		}
		else
		{
		    //如果当前格子是危险区域,直接进行下一次For循环
			continue;
		}

		if (Row == MaxSize)
		{
		    //判断是否生成了一个完整解,如果是,则输出解
			Count++;
			TravelStack(ChessStack, Count);
			PopData(ChessStack);
			Row--;
		}
		else
		{
		    //当前行如果放置皇后完成,继续下一列,进行递归
			EightQueen(ChessStack, Row);
			//某一列无法放置皇后,退出该层递归,弹出栈顶元素同时返回到这一列,继续进行递归
			PopData(ChessStack);
			Row--;
		}
	}
}

int main()
{
	ChessStack ChessStack;
	ChessStack.Top = -1;
	EightQueen(ChessStack, 0);
	return 0;
}

4.测试结果

在这里插入图片描述

八皇后问题的解,共92个。

在这里插入图片描述

十皇后问题的解,共724个。

在这里插入图片描述

做一门精致,全面详细的 java数据结构与算法!!! 让天下没有难学的数据结构, 让天下没有难学的算法, 不吹不黑,我们的讲师及其敬业,可以看到课程视频,课件,代码的录制撰写,都是在深夜,如此用心,其心可鉴,他不掉头发,谁掉头发??? 总之你知道的,不知道的,我们都讲,并且持续更新,走过路过,不要错过,不敢说是史上最全的课程,怕违反广告法,总而言之,言而总之,这门课你值得拥有,好吃不贵,对于你知识的渴求,我们管够管饱 话不多说,牛不多吹,我们要讲的本门课程内容: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法
1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构和算法支撑。2.网上数据结构和算法的课程不少,但存在两个问题:1)授课方式单一,大多是照着代码念一遍,数据结构和算法本身就比较难理解,对基础好的学员来说,还好一点,对基础不好的学生来说,基本上就是听天书了2)说是讲数据结构和算法,但大多是挂羊头卖狗肉,算法讲的很少。 本课程针对上述问题,有针对性的进行了升级 3)授课方式采用图解+算法游戏的方式,让课程生动有趣好理解 4)系统全面的讲解了数据结构和算法, 除常用数据结构和算法外,还包括程序员常用10大算法:二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法、马踏棋盘算法。可以解决面试遇到的最短路径、最小生成树、最小连通图、动态规划等问题及衍生出的面试题,让你秒杀其他面试小伙伴3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构和算法。教程内容:本教程是使用Java来讲解数据结构和算法,考虑到数据结构和算法较难,授课采用图解加算法游戏的方式。内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。学习目标:通过学习,学员能掌握主流数据结构和算法的实现机制,开阔编程思路,提高优化程序的能力。
内容简介: 无论你是从事业务开发,还是从事架构设计,想要优化设计模式,数据结构与算法是必备的一门学科,本课程使用Java来讲解数据结构和算法, 考虑到数据结构和算法较难,授课采用图解加算法游戏的方式。 内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、 递归与回溯、迷宫问题、八皇后问题算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、 排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、 多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、 克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。 为什么学数据结构与算法算法是一个程序员真正的核心竞争力。无论用哪种语言做开发,算法从程序角度而言都是灵魂内核般的存在。 程序的躯体可以各式各样,但是内核一定要追求高效整洁。 同时掌握了算法,大厂名企的Offer不再是梦寐以求的梦想,而让程序高效且健壮,也不再是难以完成的技术难题。 所以无论是为提升自我内功修炼,还是提升程序灵魂内核健全,学习算法,都是现有可供选项里的最优解。 课程大纲: 为了让大家快速系统了解数据结构与算法知识全貌,我为你总结了「数据结构与算法框架图」,帮你梳理学习重点,建议收藏!! CSDN学院Java答疑群:
本教程为授权出品 课程介绍: 1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构和算法支撑。 2.网上数据结构和算法的课程不少,但存在两个问题: 1)授课方式单一,大多是照着代码念一遍,数据结构和算法本身就比较难理解,对基础好的学员来说,还好一点,对基础不好的学生来说,基本上就是听天书了 2)说是讲数据结构和算法,但大多是挂羊头卖狗肉,算法讲的很少。 本课程针对上述问题,有针对性的进行了升级  3)授课方式采用图解+算法游戏的方式,让课程生动有趣好理解  4)系统全面的讲解了数据结构和算法, 除常用数据结构和算法外,还包括程序员常用10大算法:二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法、马踏棋盘算法。可以解决面试遇到的最短路径、最小生成树、最小连通图、动态规划等问题及衍生出的面试题,让你秒杀其他面试小伙伴 3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构和算法。 教程内容: 本教程是使用Java来讲解数据结构和算法,考虑到数据结构和算法较难,授课采用图解加算法游戏的方式。内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。 学习目标: 通过学习,学员能掌握主流数据结构和算法的实现机制,开阔编程思路,提高优化程序的能力。
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页