蓝桥杯 基础练习 杨辉三角形 (python实现)

本文介绍了如何使用Python实现杨辉三角形,包括问题描述、解题思路、代码实现及代码解析,强调了二维数组的初始化和元素计算方法。
摘要由CSDN通过智能技术生成

题目描述

资源限制
时间限制:1.0s 内存限制:256.0MB

问题描述
杨辉三角形又称Pascal三角形,它的第i+1行是(a+b)i的展开式的系数。它的一个重要性质是:三角形中的每个数字等于它两肩上的数字相加。
  
下面给出了杨辉三角形的前4行:

   1  
  1 1  
 1 2 1 
1 3 3 1

给出n,输出它的前n行。

输入格式
输入包含一个数n

输出格式
输出杨辉三角形的前n行。每一行从这一行的第一个数开始依次输出,中间使用一个空格分隔。请不要在前面输出多余的空格。

样例输入
4

样例输出
1
1 1
1 2 1
1 3 3 1

数据规模与约定
1 <= n <= 34


思路:

  1. 我们可以创建一个n*n的二维数组 nums,初试元素全部用0来代替
  2. 每行的第一个数都是1,并且下面的数都等于上面左右两个数之和。如果用 i 代表行, j 代表列,那么
    nums[ i ][ j ] = nums[ i - 1 ][ j - 1 ] + nums[ i - 1 ][ j ]
  3. 首先通过循环给 nums 二维数组中的元素赋值,再通过一个循环输出各个元素,当元素是 0 时,不输出。

代码:

n = int(input())

nums = [[0] * n for i in range(n)]

for i in range(n) :
    for j in range(n) :
        if j == 0 :
            nums[i
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值