P5836 [USACO19DEC]Milk Visits S【并查集】
- 并查集。合并的条件是:相邻并且颜色相同才合并。
- 判断是否高兴的条件是,(1)端点所处的并查集不同或者(2)并查集相同,端点的奶牛种类符合预期。
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1e5+10;
int n,m,par[maxn],x,y;char c[maxn],z;
void init(){
for(int i=1;i<=n;i++) par[i]=i;
}
int find(int x){
if(par[x]==x) return x;
return par[x]=find(par[x]);
}
void unit(int x,int y){
x=find(x),y=find(y);
if(c[x]==c[y]){
par[x]=y;
}
}
int main(){
cin>>n>>m;cin.get();
init();
for(int i=1;i<=n;i++)c[i]=cin.get();
for(int i=1;i<=n-1;i++){
cin>>x>>y;
unit(x,y);
}
for(int i=1;i<=m;i++){
cin>>x>>y>>z;
cout<<(find(x)!=find(y)||c[x]==z);
}
}
P3629 [APIO2010]巡逻【树的直径】
-
设新建1条路之后环的长度为 L L L(不含新建的路),那么走的总长度变为 2 ( n − 1 ) − L + 1 2(n-1)-L+1 2(n−1)−L+1,由此看出要求树的直径。
-
当新建2条路之后,每一条边需要走的次数如下:
·一条边仅在第2个环出现过,只用走1次
· 一条边在两个环都出现过,要走2次
·一条边在两个环都没出现过,要走2次 -
因为当一条边属于2个环时要走2次,所以在第2次求树的直径时将第1条书的直径的边的权值改为 − 1 -1 −1.
-
DP求树的直径(可以处理负权值,但只能求直径的长度):设 d p [ u ] dp[u] dp[u]表示从结点u出发向u的子树走能走到的最远距离, v v v为 u u u的子节点, d p [ u ] = m a x ( d p [ v ] + d i s ( u , v ) ) dp[u]=max(dp[v]+dis(u,v)) dp[u]=max(dp[v]+dis(u,v)).直径的两个端点可能属于 u u u的两棵不同的子树,也可能在一棵子树内。
void dp(int x){
vis[x]=1;
for(int i=head[x];i;i=e[i].next){
int y=e[i].to;
if(vis[y]) continue;
dp(y);
ans=max(ans,dis[x]+dis[y]+e[i].w);
dis[x]=max(dis[x],dis[y]+e[i].w);
}
}
- 树的遍历求直径,不能处理负权值,但是可以记录直径的端点。
void bfs(int x,int opt){
memset(dis,0,sizeof dis);
memset(vis,0,sizeof vis);
while(q.size())q.pop();
q.push(x);vis[x]=1;
while(q.size()){
int now=q.front();q.pop();
for(int i=head[now];i;i=e[i].next){
int y=e[i].to;
if(!vis[y]){
vis[y]=1;
dis[y]=dis[now]+e[i].w;
q.push(y);
if(opt) fa[y]=now;
}
}
}
for(int i=1;i<=n;i++){
if(ans<dis[i]) ans=dis[i],v1=i;
}
}
- 解题代码:
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int N=1e5+10;
int n,head[N],tot,dis[N],vis[N],fa[N],ans,v1,k;
queue<int> q;
struct Edge{
int to,w,next;
}e[2*N];
void add(int u,int v,int w){
e[++tot].to=v;
e[tot].w=w;
e[tot].next=head[u];
head[u]=tot;
}
void bfs(int x,int opt){
memset(dis,0,sizeof dis);
memset(vis,0,sizeof vis);
while(q.size())q.pop();
q.push(x);vis[x]=1;
while(q.size()){
int now=q.front();q.pop();
for(int i=head[now];i;i=e[i].next){
int y=e[i].to;
if(!vis[y]){
vis[y]=1;
dis[y]=dis[now]+e[i].w;
q.push(y);
if(opt) fa[y]=now;
}
}
}
for(int i=1;i<=n;i++){
if(ans<dis[i]) ans=dis[i],v1=i;
}
}
void change(int x){
while(fa[x]){
int father=fa[x];
for(int i=head[father];i;i=e[i].next){
if(e[i].to==x){
e[i].w=-1;break;
}
}
for(int i=head[x];i;i=e[i].next){
if(e[i].to==father){
e[i].w=-1;break;
}
}
x=father;
}
}
void dp(int x){
vis[x]=1;
for(int i=head[x];i;i=e[i].next){
int y=e[i].to;
if(vis[y]) continue;
dp(y);
ans=max(ans,dis[x]+dis[y]+e[i].w);
dis[x]=max(dis[x],dis[y]+e[i].w);
}
}
int main(){
cin>>n>>k;
for(int i=1;i<n;i++){
int a,b;
cin>>a>>b;
add(a,b,1);add(b,a,1);
}
if(k==1){
bfs(1,0);
bfs(v1,0);
cout<<2*n-dis[v1]-1<<endl;
}
else{
bfs(1,0);
bfs(v1,1);
int len1=dis[v1];
change(v1);
memset(dis,0,sizeof dis);
memset(vis,0,sizeof vis);
ans=0;
dp(1);
cout<<2*n-ans-len1<<endl;
}
}
P1395 会议【树型DP】
- s i z e [ i ] size[i] size[i]表示 i i i于 i i i的子树的节点个数之和
- d [ i ] d[i] d[i]表示当前节点距离1节点的距离(1节点到自己的距离为1,其余节点也要+1,目的是标记1节点已经访问过)
- f [ x ] f[x] f[x]表示在 i i i点开会的距离之和.状态转移方程为,设 y y y是 x x x的父节点, f [ x ] = f [ y ] + ( n − s i z e [ x ] ) − s i z e [ x ] f[x]=f[y]+(n-size[x])-size[x] f[x]=f[y]+(n−size[x])−size[x].意义是(1)对于不在 x x x的子树的节点,到 x x x的距离等于到 y y y的距离+1(2)对于在x的子树的节点,距离等于到 y y y的距离-1.
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=5e4+10;
int d[N],f[N],n,tot,size[N],vis[N],head[N];
struct Edge{
int to,next;
}e[2*N];
void add(int x,int y){
e[++tot].to=y;
e[tot].next=head[x];
head[x]=tot;
}
void init(int x){
size[x]=1;
for(int i=head[x];i;i=e[i].next){
int y=e[i].to;
if(d[y]) continue;
d[y]=d[x]+1;
init(y);
size[x]+=size[y];
}
}
void dfs(int x,int fa){
f[x]=f[fa]+n-2*size[x];
for(int i=head[x];i;i=e[i].next){
int y=e[i].to;
if(y==fa) continue;
dfs(y,x);
}
}
int main(){
cin>>n;
for(int x,y,i=1;i<n;i++){
cin>>x>>y;
add(x,y),add(y,x);
}
d[1]=1;//标记1点已经来过
init(1);
int maxn=0,v=1;
for(int i=1;i<=n;i++) maxn+=d[i];
maxn-=n;
f[1]=maxn;
for(int i=head[1];i;i=e[i].next){
int y=e[i].to;
dfs(y,1);
}
for(int i=2;i<=n;i++){
if(f[i]<maxn) maxn=f[i],v=i;
}
cout<<v<<" "<<maxn<<endl;
}
P5536 【XR-3】核心城市【树的直径】
- 树中的节点 a a a,距离他最远的节点是直径的端点,所以最大距离就是 m a x ( d i s ( a , 直 径 的 端 点 1 ) , d i s ( a , 直 径 的 端 点 2 ) ) max(dis(a,直径的端点1),dis(a,直径的端点2)) max(dis(a,直径的端点1),dis(a,直径的端点2)),所以当 a a a是直径的中点时,可以保证最大距离最小。
- 记 d e e p [ i ] deep[i] deep[i]为在以直径的重点为根的树中, i i i节点的深度, m a x d e e [ i ] maxdee[i] maxdee[i]为在以直径的重点为根的树中, i i i节点所能到达的最深的深度。
- d i s [ i ] = m a x d e e p [ i ] − d e e p [ i ] dis[i]=maxdeep[i]-deep[i] dis[i]=maxdeep[i]−deep[i]表示离 i i i节点树叶方向上的最远的节点。
- 选取直径的中点,前 k − 1 k-1 k−1个 d i s [ i ] dis[i] dis[i]最大的节点。
- 最终的答案为,非核心城市的 m a x ( d i s + 1 ) max(dis+1) max(dis+1).因为 d i s [ i ] dis[i] dis[i]最大,所以一定和核心城市相连,核心城市据最远的节点的距离为 d i s [ i ] + 1 dis[i]+1 dis[i]+1.
#include<iostream>
#include<algorithm>
#include<cstring>
#define N 100010
using namespace std;
int n,k,head[N],tot,deep[N],maxdeep[N],diameter,v1,v2,f[N],dis[N],ans;
struct Edge{
int to,next;
}e[2*N];
void add(int x,int y){
e[++tot].to=y;
e[tot].next=head[x];
head[x]=tot;
}
void dfs(int x,int fa){
if(deep[x]>diameter){
diameter=deep[x];
v1=x;
}
for(int i=head[x];i;i=e[i].next){
int y=e[i].to;
if(y==fa) continue;
deep[y]=deep[x]+1;
f[y]=x;
dfs(y,x);
}
}
void dfs2(int x,int fa){
maxdeep[x]=deep[x];
for(int i=head[x];i;i=e[i].next){
int y=e[i].to;
if(y==fa) continue;
deep[y]=deep[x]+1;
dfs2(y,x);
maxdeep[x]=max(maxdeep[x],maxdeep[y]);
}
}
bool cmp(int x,int y){
return x>y;
}
int main(){
cin>>n>>k;
for(int x,y,i=1;i<n;i++){
cin>>x>>y;
add(x,y);add(y,x);
}
dfs(1,0);
memset(deep,0,sizeof deep);
diameter=0;
dfs(v1,0);
int midpoint=v1;
for(int i=1;i<=(deep[v1]+1)/2;i++){
midpoint=f[midpoint];
}
memset(deep,0,sizeof deep);
dfs2(midpoint,0);
for(int i=1;i<=n;i++) dis[i]=maxdeep[i]-deep[i];
sort(dis+1,dis+1+n,cmp);
for(int i=k+1;i<=n;i++) ans=max(ans,dis[i]+1);
cout<<ans<<endl;
}