LIC最长上升子序列-算法题

题意:给个序列,求最长上升子序列
1、返回子序列长度
2、返回该序列(字典序最小)

题解:
dp[i] 表示以 nums[i] 结尾的「上升子序列」的长度
len[i] 表示长度为 i+1 的所有上升子序列结尾的最小值

int lengthOfLIS(vector<int>& arr) {
    int n = arr.size();
    vector<int> len(n+1, -1), dp(n);
    int maxn = 1;
    len[maxn] = arr[0];
    dp[0] = maxn;
    for (int i = 1; i < n; ++i) {
        if (arr[i] > len[maxn]) {
            len[++maxn] = arr[i];
            dp[i] = maxn;
        }
        else {
            int left = 1, right = maxn, pos = 0;
            while (left <= right) {
                int mid = left + right >> 1;
                if (len[mid] < arr[i]) {
                    pos = mid;
                    left = mid + 1;
                }
                else right = mid - 1;
            }
            len[pos+1] = arr[i];
            dp[i] = pos+1;
        }
    }
    vector<int> ans(maxn);
    for (int i = n-1; i >= 0; --i) {
        if (dp[i] == maxn) {
            ans[--maxn] = arr[i];
        }
    }
    for (auto &x : ans) 
        cout << x << " ";
    return ans.size();
}

库函数二分

int lengthOfLIS(vector<int>& nums) {
        vector<int> dp;
        dp.push_back(nums[0]);
        for (int i = 1; i < nums.size(); ++i) {
            if (nums[i] > dp.back()) 
                dp.push_back(nums[i]);
            else {
                int pos = lower_bound(dp.begin(), dp.end(), nums[i])-dp.begin();
                dp[pos] = nums[i];
            }
        }
        int ret = dp.size();
        return ret;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值