最大公约数

求最小公倍数算法:

最小公倍数=两整数的乘积÷最大公约数

求最大公约数算法:

(1)辗转相除法

有两整数a和b:

① a%b得余数c

② 若c=0,则b即为两数的最大公约数

③ 若c≠0,则a=b,b=c,再回去执行①

例如求27和15的最大公约数过程为:

27÷15 余1215÷12余312÷3余0因此,3即为最大公约数

复制代码
1 #include<stdio.h>
2 int main() /* 辗转相除法求最大公约数 /
3 {
4 int m, n, a, b, t, c;
5 printf(“Input two integer numbers:\n”);
6 scanf("%d%d", &a, &b);
7 m=a; n=b;
8 while(b!=0) / 余数不为0,继续相除,直到余数为0 /
9 { c=a%b; a=b; b=c;}
10 printf(“The largest common divisor:%d\n”, a);
11 printf(“The least common multiple:%d\n”, mn/a);
12 }
复制代码
提供一种简写的方式:

1 int gcd(int a,int b)
2 {
3 return b==0?a:gcd(b,a%b);
4 }

⑵ 相减法

有两整数a和b:

① 若a>b,则a=a-b

② 若a<b,则b=b-a

③ 若a=b,则a(或b)即为两数的最大公约数

④ 若a≠b,则再回去执行①

例如求27和15的最大公约数过程为:

27-15=12( 15>12 ) 15-12=3( 12>3 )

12-3=9( 9>3 ) 9-3=6( 6>3 )

6-3=3( 3==3 )

因此,3即为最大公约数

复制代码
1 #include<stdio.h>
2 int main ( ) /* 相减法求最大公约数 /
3 {
4 int m, n, a, b, c;
5 printf(“Input two integer numbers:\n”);
6 scanf ("%d,%d", &a, &b);m=a; n=b;
7 / a, b不相等,大数减小数,直到相等为止。/
8 while ( a!=b)
9 if (a>b) a=a-b;
10 else b=b-a;
11 printf(“The largest common divisor:%d\n”, a);
12 printf(“The least common multiple:%d\n”, mn/a);
13 }
复制代码
⑶穷举法

有两整数a和b:

① i=1

② 若a,b能同时被i整除,则t=i

③ i++

④ 若 i <= a(或b),则再回去执行②

⑤ 若 i > a(或b),则t即为最大公约数,结束

改进:

① i= a(或b)

② 若a,b能同时被i整除,则i即为最大公约数,

结束

③ i–,再回去执行②

有两整数a和b:

① i=1

② 若a,b能同时被i整除,则t=i

③ i++

④ 若 i <= a(或b),则再回去执行②

⑤ 若 i > a(或b),则t即为最大公约数,结束

改进:

① i= a(或b)

② 若a,b能同时被i整除,则i即为最大公约数,

结束

③ i–,再回去执行②

复制代码
1 #include<stdio.h>
2 int main () /* 穷举法求最大公约数 /
3 {
4 int m, n, a, b, i, t;
5 printf(“Input two integer numbers:\n”);
6 scanf ("%d,%d", &a, &b);m=a; n=b;
7 for (i=1; i<= a; i++)
8 if ( a%i == 0 && b%i ==0 ) t=i;
9 printf(“The largest common divisor:%d\n”, t);
10 printf(“The least common multiple:%d\n”, mn/t);
11 }
12 /* 改进后的
13 for (t= a; t>0; t-- )
14 if ( a%t == 0 && b%t ==0 ) break;
15 */
复制代码

复制代码
1 //穷举法求最小公倍数
2 for (i= a; ; i++ )
3 if ( i % a == 0 && i % b 0 ) break;
4 printf(“The least common multiple:%d\n”, i )
5
6 //多个数的最大公约数和最小公倍数
7 for (i= a; i>0; i-- )
8 if (a%i0&&b%i0&&c%i0) break;
9 printf(“The largest common divisor:%d\n”, i);
10 for (i= a; ; i++ )
11 if (i%a0&&i%b0&&i% c==0) break;
12 printf(“The least common multiple:%d\n”, i )

作者:我不是阿萌啊
来源:CSDN
原文:https://blog.csdn.net/G191018/article/details/83003704
版权声明:本文为博主原创文章,转载请附上博文链接!

内容概要:本文详细介绍了如何利用Simulink进行自动代码生成,在STM32平台上实现带57次谐波抑制功能的霍尔场定向控制(FOC)。首先,文章讲解了所需的软件环境准备,包括MATLAB/Simulink及其硬件支持包的安装。接着,阐述了构建永磁同步电机(PMSM)霍尔FOC控制模型的具体步骤,涵盖电机模型、坐标变换模块(如Clark和Park变换)、PI调节器、SVPWM模块以及用于抑制特定谐波的陷波器的设计。随后,描述了硬件目标配置、代码生成过程中的注意事项,以及生成后的C代码结构。此外,还讨论了霍尔传感器的位置估算、谐波补偿器的实现细节、ADC配置技巧、PWM死区时间和换相逻辑的优化。最后,分享了一些实用的工程集成经验,并推荐了几篇有助于深入了解相关技术和优化控制效果的研究论文。 适合人群:从事电机控制系统开发的技术人员,尤其是那些希望掌握基于Simulink的自动代码生成技术,以提高开发效率和控制精度的专业人士。 使用场景及目标:适用于需要精确控制永磁同步电机的应用场合,特别是在面对高次谐波干扰导致的电流波形失真问题时。通过采用文中提供的解决方案,可以显著改善系统的稳定性和性能,降低噪声水平,提升用户体验。 其他说明:文中不仅提供了详细的理论解释和技术指导,还包括了许多实践经验教训,如霍尔传感器处理、谐波抑制策略的选择、代码生成配置等方面的实际案例。这对于初学者来说是非常宝贵的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值