DW数据挖掘学习4

1、GBDT模型

GBDT(Gradient Boosting Decision Tree),全名叫梯度提升决策树,使用的是Boosting的思想。

Boosting方法训练基分类器时采用串行的方式,各个基分类器之间有依赖。它的基本思路是将基分类器层层叠加,每一层在训练的时候,对前一层基分类器分错的样本,给予更高的权重。测试时,根据各层分类器的结果的加权得到最终结果。

Bagging与Boosting的串行训练方式不同,Bagging方法在训练过程中,各基分类器之间无强依赖,可以进行并行训练。

GBDT的原理很简单,就是所有弱分类器的结果相加等于预测值,然后下一个弱分类器去拟合误差函数对预测值的残差(这个残差就是预测值与真实值之间的误差)。当然了,它里面的弱分类器的表现形式就是各棵树。

举一个非常简单的例子,比如我今年20岁了,但计算机或者模型GBDT并不知道我今年多少岁,那GBDT咋办呢?

它会在第一个弱分类器(或第一棵树中)随便用一个年龄比如10岁来拟合,然后发现误差有10岁;
接下来在第二棵树中,用6岁去拟合剩下的损失,发现差距还有4岁;
接着在第三棵树中用3岁拟合剩下的差距,发现差距只有1岁了;
最后在第四课树中用1岁拟合剩下的残差,完美。
最终,四棵树的结论加起来,就是真实年龄20岁(实际工程中,gbdt是计算负梯度,用负梯度近似残差)。

2、XGBoost模型

XGBoost全称是eXtreme Gradient Boosting,可译为极限梯度提升算法。它由陈天奇所设计,致力于让提升树突破自身的计算极限,以实现运算快速,性能优秀的工程目标。和传统的梯度提升算法相比,XGBoost进行了许多改进,它能够比其他使用梯度提升的集成算法更加快速,并且已经被认为是在分类和回归上都拥有超高性能的先进评估器。除了比赛之中,高科技行业和数据咨询等行业也已经开始逐步使用XGBoost,了解这个算法,已经成为学习机器学习中必要的一环。

先来举个例子,我们要预测一家人对电子游戏的喜好程度,考虑到年轻和年老相比,年轻更可能喜欢电子游戏,以及男性和女性相比,男性更喜欢电子游戏,故先根据年龄大小区分小孩和大人,然后再通过性别区分开是男是女,逐一给各人在电子游戏喜好程度上打分,如下图所示:
在这里插入图片描述
这样,训练出了2棵树tree1和tree2,类似之前gbdt的原理,两棵树的结论累加起来便是最终的结论,所以小孩的预测分数就是两棵树中小孩所落到的结点的分数相加:2 + 0.9 = 2.9。爷爷的预测分数同理:-1 + (-0.9)= -1.9。具体如下图所示:在这里插入图片描述
恩,你可能要拍案而起了,惊呼,这不是跟上文介绍的gbdt乃异曲同工么?事实上,如果不考虑工程实现、解决问题上的一些差异,xgboost与gbdt比较大的不同就是目标函数的定义。xgboost的目标函数如下图所示:
在这里插入图片描述
其中:
红色箭头所指向的L 即为损失函数;
红色方框所框起来的是正则项(包括L1正则、L2正则);
红色圆圈所圈起来的为常数项;
对于f(x)f(x)f(x),xgboost利用泰勒展开三项,做一个近似。
我们可以很清晰地看到,最终的目标函数只依赖于每个数据点在误差函数上的一阶导数和二阶导数。

除了算法上与传统的GBDT有一些不同外,XGBoost还在工程实现上做了大量的优化。总的来说,两者之间的区别和联系可以总结成以下几个方面。

GBDT是机器学习算法,XGBoost是该算法的工程实现。
在使用CART作为基分类器时,XGBoost显式地加入了正则项来控制模 型的复杂度,有利于防止过拟合,从而提高模型的泛化能力。
GBDT在模型训练时只使用了代价函数的一阶导数信息,XGBoost对代 价函数进行二阶泰勒展开,可以同时使用一阶和二阶导数。
传统的GBDT采用CART作为基分类器,XGBoost支持多种类型的基分类 器,比如线性分类器。
传统的GBDT在每轮迭代时使用全部的数据,XGBoost则采用了与随机 森林相似的策略,支持对数据进行采样。
传统的GBDT没有设计对缺失值进行处理,XGBoost能够自动学习出缺 失值的处理策略。

3、LightGBM模型

LightGBM是什么东东??
不久前微软DMTK(分布式机器学习工具包)团队在GitHub上开源了性能超越其他boosting工具的LightGBM,在三天之内GitHub上被star了1000次,fork了200次。知乎上有近千人关注“如何看待微软开源的LightGBM?”问题,被评价为“速度惊人”,“非常有启发”,“支持分布式”,“代码清晰易懂”,“占用内存小”等。

LightGBM (Light Gradient Boosting Machine)(请点击https://github.com/Microsoft/LightGBM)是一个实现GBDT算法的框架,支持高效率的并行训练。

LightGBM在Higgs数据集上LightGBM比XGBoost快将近10倍,内存占用率大约为XGBoost的1/6,并且准确率也有提升。GBDT在每一次迭代的时候,都需要遍历整个训练数据多次。如果把整个训练数据装进内存则会限制训练数据的大小;如果不装进内存,反复地读写训练数据又会消耗非常大的时间。尤其面对工业级海量的数据,普通的GBDT算法是不能满足其需求的。

LightGBM提出的主要原因就是为了解决GBDT在海量数据遇到的问题,让GBDT可以更好更快地用于工业实践。

LightGBM在哪些地方进行了优化 (区别XGBoost)?

基于Histogram的决策树算法
带深度限制的Leaf-wise的叶子生长策略
直方图做差加速直接
支持类别特征(Categorical Feature)
Cache命中率优化
基于直方图的稀疏特征优化多线程优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值