首先了解一下堆的定义:n个元素的序列{k1 ,k2 , … , kn },当且仅当满足下列关系,称为堆。
①ki ≤k2i && ki ≤k2i+1
②ki ≥k2i && ki ≥k2i+1
(i = 1,2,…,⌊ n/2 ⌋ )
如果满足①,则是小顶堆,满足②则是大顶堆。
如果将序列 {k1 , k2 , … , kn} 对应为一维数组,且序列中元素的下标与数组中下标一致,即数组中下标为 0 的位置不存放数据元素,此时该序列可看成是一颗完全二叉树,则堆的定义说明,在对应的完全二叉树中非叶子结点的值均不大于(或不小于)其左右孩子结点的值。由此,若堆是大顶堆,则堆顶元素——完全二叉树的根——必为序列中n个元素的最大值;反之,若是小顶堆,则堆顶元素必为序列中n个元素的最小值。
例:以二叉堆 A = {4,1,3,2,16,9,10,14,8,7}为例,对其进行最大堆的生成,以最后一个非叶子节点开始,到根节点结束。过程如下:
设最后一个非叶子节点的位置为i,先在i的左右节点选出较大者,如果其值大于当前节点则进行交换,然后向下循环执行这个步骤。
大顶堆代码:
/**
*
* @param a 数组
* @param n 数组长度
* @param i 当前i结点
*/
public static void maxHeap(int[] a, int n, int i) {
int left = 2*i,right = 2*i+1,largest = i;
if(left<=n && a[left]>a[i]) {
largest = left;
}
if(right<=n && a[right]>a[largest]) {
largest = right;
}
if(largest != i) {
int temp = a[i];
a[i] = a[largest];
a[largest] = temp;
maxHeap(a,n,largest);
}
}
public static void main(String[] args) throws Exception {
int[] a = {Integer.MIN_VALUE,4,1,3,2,16,9,10,14,8,7};
//i = 1,2,...,⌊ n/2 ⌋
for(int len = a.length-1,i = len/2;i>=1;i--) {
maxHeap(a, len, i);
}
System.out.println(Arrays.toString(a));
}
输出结果:[-2147483648, 16, 14, 10, 8, 7, 9, 3, 2, 4, 1]
小顶堆代码:
public static void maxHeap(int[] a, int n, int i) {
int left = 2*i,right = 2*i+1,largest = i;
if(left<=n && a[left]<a[i]) {
largest = left;
}
if(right<=n && a[right]<a[largest]) {
largest = right;
}
if(largest != i) {
int temp = a[i];
a[i] = a[largest];
a[largest] = temp;
maxHeap(a,n,largest);
}
}