[PAT顶级]1027 Larry and Inversions (35分)

题意:

给你一个排列,求分别将其子区间的数reverse之后,得到的数列的逆序对的数目。

分析:

先求出原序列的逆序对的数量,然后固定区间左端点i,移动右端点j,每次通过树状数组求[i, j]中小于a[j]的数目和大于a[j]的数目,计算本次反转对逆序对的贡献,用res记录前面几次贡献的和。

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
//typedef __int128 lll;
#define print(i) cout << "debug: " << i << endl
#define close() ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
#define mem(a, b) memset(a, b, sizeof(a))
const ll mod = 1e9 + 7;
const int maxn = 1010;
const int inf = 0x3f3f3f3f;
int a[maxn];
int c[maxn];

int lowbit(int x)
{
    return x & (-x);
}


ll sum(int val)
{
    ll res = 0;
    for(int i = val; i >= 1; i -= lowbit(i))
        res += c[i];
    return res;
}

void insert(int val)
{
    for(int i = val; i < maxn; i += lowbit(i))
        c[i]++;
}

int main()
{
    int n; cin >> n;
    ll ans = 0;
    for(int i = 1; i <= n; i++) 
    {
        cin >> a[i];
        ans += (i - 1 - sum(a[i]));
        insert(a[i]);
    }
    for(int i = 1; i <= n; i++)
    {
        ll res = 0;
        mem(c, 0);
        for(int j = i; j <= n; j++)
        {
            int small = sum(a[j]);
            int large = j - i - small; 
            // print(small), print(large); 
            res += small - large;
            printf("%d%c", res + ans, i == n && j == n ? '\n' : ' ');
            insert(a[j]);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值