[AcWing面向模型编程]单调队列优化dp

本文详细分析了四道算法题目,包括烽火传递、修剪草坪、绿色通道和理想的正方形,这些题目均涉及动态规划和单调队列的巧妙应用。通过实例代码解析,展示了如何在不同场景下利用这两种算法思想解决复杂问题,为读者深入理解动态规划和单调队列提供实战参考。
摘要由CSDN通过智能技术生成

题目1:1089. 烽火传递

分析:

分析简单。主要注意初始化问题:将dp[0]放入一开始的队列中。

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
//typedef __int128 lll;
#define print(i) cout << "debug: " << i << endl
#define close() ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
#define mem(a, b) memset(a, b, sizeof(a))
const ll mod = 1e9 + 7;
const int maxn = 1e4 + 10;
const int inf = 0x3f3f3f3f;
int n, m;
int v[maxn], q[maxn];
int dp[maxn];

int main()
{
    cin >> n >> m;
    for(int i = 1; i <= n; i++) cin >> v[i];
    int l = 0, r = 0;
    for(int i = 1; i <= n; i++)
    {
        while(l <= r && q[l] < i - m) l++;
        dp[i] = v[i] + dp[q[l]];
        while(l <= r && dp[i] <= dp[q[r]]) r--;
        q[++r] = dp[i];
    }
    int res = inf;
    for(int i = n - m + 1; i <= n; i++)
        res = min(res, dp[i]);
    cout << res << endl;

}

题目2:1087. 修剪草坪

分析:

注意初始化的问题:队列一开始不为空,含有下标0,用来后续的转移,不可省略。

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
//typedef __int128 lll;
#define print(i) cout << "debug: " << i << endl
#define close() ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
#define mem(a, b) memset(a, b, sizeof(a))
const ll mod = 1e9 + 7;
const int maxn = 1e6 + 10;
const int inf = 0x3f3f3f3f;
ll sum[maxn], dp[maxn];
int q[maxn];
int n, k;

ll calc(int x)
{
    return !x ? 0 : dp[x - 1] - sum[x];
}

int main()
{
    cin >> n >> k;
    for(int i = 1; i <= n; i++)
        cin >> sum[i], sum[i] += sum[i - 1];
    int head = 1, tail = 1;
    for(int i = 1; i <= n; i++)
    {
        while(head <= tail && q[head] < i - k) head++;
        dp[i] = max(dp[i - 1], sum[i] + calc(q[head]));
        while(head <= tail && calc(i) >= calc(q[tail])) tail--;
        q[++tail] = i;
    }
    cout << dp[n] << endl;
}

题目3:1090. 绿色通道

分析:

这个题意是在不超过t时间内间隔的最小值。考虑二分答案+dp。
对于当前极限间隔,我们通过dp求出最小的花费时间,如果小于t则返回true,否则返回false

  • 复习二分答案代码,见注释。

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
//typedef __int128 lll;
#define print(i) cout << "debug: " << i << endl
#define close() ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
#define mem(a, b) memset(a, b, sizeof(a))
const ll mod = 1e9 + 7;
const int maxn = 5e4 + 10;
const int inf = 0x3f3f3f3f;
int n, t;
int v[maxn], q[maxn];
int dp[maxn];

bool judge(int limit)
{
    int l = 0, r = 0;
    q[0] = 0;
    for(int i = 1; i <= n; i++)
    {
        while(l <= r && q[l] < i - limit - 1) l++;
        dp[i] = dp[q[l]] + v[i];
        while(l <= r && dp[i] <= dp[q[r]]) r--;
        q[++r] = i;
    }
    for(int i = n - limit; i <= n; i++)
        if(dp[i] <= t)
            return true;
    return false;
}

int main()
{
    cin >> n >> t;
    for(int i = 1; i <= n; i++) cin >> v[i];
    int l = 0, r = n;
    while(l <= r) // <=
    {
        int mid = l + r >> 1;
        if(judge(mid)) r = mid - 1; // - 1
        else l = mid + 1;// + 1
    }
    cout << l << endl;//求最小值返回l,求最大值返回r
}

题目4:1091. 理想的正方形

分析:

这个题之前牛客做过,应该可以用二维滑动窗口求。这里y总用的单调队列。
先按行求出[i - k +1, i]的min,max值,存起来。然后再对刚求出的两个矩阵按列使用单调队列求最值。

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
//typedef __int128 lll;
#define print(i) cout << "debug: " << i << endl
#define close() ios::sync_with_stdio(0), cin.tie(0), cout.tie(0)
#define mem(a, b) memset(a, b, sizeof(a))
const ll mod = 1e9 + 7;
const int maxn = 1e3 + 10;
const int inf = 0x3f3f3f3f;
int n, m, k;
int g[maxn][maxn], lmin[maxn][maxn], lmax[maxn][maxn];
int cmin[maxn], cmax[maxn], buf[maxn];

void getmin(int a[], int b[], int num)
{
    int q[maxn];
    int l = 1, r = 0;
    for(int i = 1; i <= num; i++)
    {
        while(l <= r && q[l] <= i - k) l++;
        while(l <= r && a[i] <= a[q[r]]) r--;
        q[++r] = i;
        b[i] = a[q[l]];
    }
}

void getmax(int a[], int b[], int num)
{
    int q[maxn];
    int l = 1, r = 0;
    for(int i = 1; i <= num; i++)
    {
        while(l <= r && q[l] <= i - k) l++;
        while(l <= r && a[i] >= a[q[r]]) r--;
        q[++r] = i;
        b[i] = a[q[l]];
    }
}


int main()
{
    cin >> n >> m >> k;
    for(int i = 1; i <= n; i++)
        for(int j = 1; j <= m; j++)
            scanf("%d", &g[i][j]);
    for(int i = 1; i <= n; i++)
    {
        getmin(g[i], lmin[i], m);
        getmax(g[i], lmax[i], m);
    }
    int minn = inf;
    for(int j = k; j <= m; j++)
    {
        for(int i = 1; i <= n; i++)
            buf[i] = lmin[i][j];
        getmin(buf, cmin, n);
        for(int i = 1; i <= n; i++)
            buf[i] = lmax[i][j];
        getmax(buf, cmax, n);
        
        for(int i = k; i <= n; i++)
            minn = min(minn, cmax[i] - cmin[i]);
    }
    cout << minn << endl;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值