一、题目描述
众所周知,TT 有一只魔法猫。
今天他在 B 站上开启了一次旅行直播,记录他与魔法猫在喵星旅游时的奇遇。 TT 从家里出发,准备乘坐猫猫快线前往喵星机场。猫猫快线分为经济线和商业线两种,它们的速度与价钱都不同。当然啦,商业线要比经济线贵,TT 平常只能坐经济线,但是今天 TT 的魔法猫变出了一张商业线车票,可以坐一站商业线。假设 TT 换乘的时间忽略不计,请你帮 TT 找到一条去喵星机场最快的线路,不然就要误机了!
输入
输入包含多组数据。每组数据第一行为 3 个整数 N, S 和 E (2 ≤ N ≤ 500, 1 ≤ S, E ≤ 100),即猫猫快线中的车站总数,起点和终点(即喵星机场所在站)编号。
下一行包含一个整数 M (1 ≤ M ≤ 1000),即经济线的路段条数。
接下来有 M 行,每行 3 个整数 X, Y, Z (1 ≤ X, Y ≤ N, 1 ≤ Z ≤ 100),表示 TT 可以乘坐经济线在车站 X 和车站 Y 之间往返,其中单程需要 Z 分钟。
下一行为商业线的路段条数 K (1 ≤ K ≤ 1000)。
接下来 K 行是商业线路段的描述,格式同经济线。
所有路段都是双向的,但有可能必须使用商业车票才能到达机场。保证最优解唯一。
输出
对于每组数据,输出3行。第一行按访问顺序给出 TT 经过的各个车站(包括起点和终点),第二行是 TT 换乘商业线的车站编号(如果没有使用商业线车票,输出"Ticket Not Used",不含引号),第三行是 TT 前往喵星机场花费的总时间。
本题不忽略多余的空格和制表符,且每一组答案间要输出一个换行
输入样例
4 1 4
4
1 2 2
1 3 3
2 4 4
3 4 5
1
2 4 3
输出样例
1 2 4
2
5
二、思路概述
1.此题给出了N个站点,M条经济路段和K条商业路段,要求找出从起点到终点所花费的最短时间,最多可使用一条商业路段,也可不使用商业路段。
2.这个是单源最短路径问题,可使用dijkstra算法,算出每个点到起点的最短路径。每次使用当前离源点最近的点,来更新这个点可到达的点的距离,并使用pre数组记录前驱节点。
三、细节
1.由于对scanf的使用不太了解的缘故,判断是否有输入输出的时候,出现了错误。
while (scanf("%d%d%d", &NN, &S, &E)!= EOF)
2.使用商业线和不使用商业线是两种情况,不使用商业线的情况比较简单,只要从终点开始回溯就可记录路线。使用商业线就要从商业段开始断开,两次回溯。
四、完整代码
/* 以起点为源点求单源最短路,得到 dis1 数组
? 再以终点为源点求单源最短路,得到 dis2 数组
? 枚举商业线(u, v, w),取 min{dis1[u]+dis2[v]+w, dis1[v]+dis2[u]+w},最终再与不走商业线的答案取min*/
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
#include<vector>
const int N = 2020;
const int inf = 100000000;
using namespace std;
struct edge
{
int to, next, w;
}e[2*N];
int head[N],dis1[N],dis2[N],pre1[N],pre2[N],vis[N];
int tol=0;
void init()
{
tol = 0;
for (int i = 0; i < N; i++)
head[i] = -1;
}
void addedge(int form,int to, int w)
{
tol++;//从e[1]开始存储数据
e[tol].to = to;
e[tol].w = w;
e[tol].next = head[form];
head[form] = tol;
}
priority_queue<pair<int, int> > q;
void dijkstra(int s,int n,int *dis,int *pre)
{
while (!q.empty())q.pop();//先清空堆
for (int i = 0; i < n; i++)
{
vis[i] = 0;
dis[i] = inf;
pre[i] = -1;
}
dis[s] = 0;
q.push(make_pair(0, s));
while (!q.empty())
{
int x = q.top().second;
q.pop();
if (vis[x] == 1)continue;
vis[x] = 1;
for (int i = head[x]; i!=-1; i = e[i].next)
{
int to = e[i].to ;
int w = e[i].w;
if (dis[to] > dis[x] + w)
{
dis[to] = dis[x] + w;
pre[to] = x;
q.push(make_pair(-dis[to], to));
}
}
}
}
int main()
{
int NN, S, E;//(2 ≤ N ≤ 500, 1 ≤ S, E ≤ 100)
int pd=0;
while (scanf("%d%d%d", &NN, &S, &E)!= EOF)//???迷惑行为
{//即猫猫快线中的车站总数,起点和终点(即喵星机场所在站)编号
if(pd==1)cout<<endl;
else pd=1;
int M;// (1 ≤ M ≤ 1000)
scanf("%d", &M);//即经济线的路段条数
init();
for (int i = 0; i < M; i++)
{
int X, Y, Z;
scanf("%d%d%d", &X, &Y, &Z);// (1 ≤ X, Y ≤ N, 1 ≤ Z ≤ 100)
addedge(X, Y, Z);//表示 TT 可以乘坐经济线在车站 X 和车站 Y 之间往返,其中单程需要 Z 分钟。
addedge(Y, X, Z);//无向图
}
dijkstra(S,NN+1,dis1,pre1);
dijkstra(E,NN+1,dis2,pre2);
int K;
scanf("%d", &K);//商业线的路段条数 K (1 ≤ K ≤ 1000)
int mintime = dis1[E];//mintime的初始值为没有使用商业线
int bh = 0;//用来记录商业站的编号
int bh2 = 0;
for (int i = 0; i < K; i++)
{
int X, Y, Z;
scanf("%d%d%d", &X, &Y, &Z);// (1 ≤ X, Y ≤ N, 1 ≤ Z ≤ 100)
int d1=dis1[X] + dis2[Y] + Z;
int d2=dis1[Y] + dis2[X] + Z;
if(d1<mintime)
{
mintime = d1;
bh = X;//编号bh是从经济线转商业线
bh2 = Y;//编号bh2是从商业线转经济线
}
if(d2<mintime)
{
mintime = d2;
bh = Y;
bh2 = X;
}
}
//vector<int> v;
if (bh == 0)//没有使用商业线编号
{
int* cz = new int[NN + 1];//cz数组用来存储按访问顺序 TT 经过的各个车站
int num = pre1[E];
int co = 0;
cz[0] = E;
while (num!=-1)
{
co++;
cz[co] = num;
num = pre1[num];
}
for (int i = co; i >= 0; i--)
{
printf("%d ", cz[i]);
}
printf("\n");
cout << "Ticket Not Used" << endl;
printf("%d\n", mintime);
}
else//使用商业线编号
{
int* cz = new int[NN + 1];//cz数组用来存储按访问顺序 TT 经过的各个车站
int co=0;
cz[co] = bh;
int num = pre1[bh];
while (num != -1)
{
co++;
cz[co] = num;
num = pre1[num];
//cout<<113<<endl;
}
for (int i = co; i >= 0; i--)//输出起点到bh
{
printf("%d ", cz[i]);
}
printf("%d ",bh2);
num=pre2[bh2];
while(num!=-1)
{
printf("%d ",num);
num=pre2[num];
}
printf("\n");
printf("%d\n", bh);
printf("%d\n", mintime);
}
}
return 0;
}