1.个体与集成
集成学习是通过构建并结合多个学习器来完成学习任务,分为同质集成和异质集成。
集成学习将多个学习器结合,通常可以获得单一学习器优越的泛化性能,对“弱学习器”更明显。
2.Boosting
从初始训练集训练出一个基学习器,再根据基学习器的表现对训练样本分布进行调整,使得先前基学习器做的训练样本再后续受到更多关注,然后基于调整后的样本分布训练下一个基学习器,重复这个步骤,直到基学习器数目达到设置的阈值T,最终将T个基学习器进行加权结合。
3.Bagging和随机森林
Bagging采用自助采样法采出T个含m个训练样本的采样集,然后基于每个采样集训练基学习器,将这些基学习器结合的。
随机森林是在以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机属性选择。
4.结合策略
结合策略有以下几个:平均法,投票法,学习法
5.多样性
个体学习器应好而不同,个体学习器准确性越高、多样性越大,集成越好。
多样性度量是用于度量集成个体分类器的多样性。
可以通过样本数据扰动、输入属性扰动、输出表示扰动、算法参数扰动增强多样性。