微服务19_分布式缓存:Redis:持久化、主从、哨兵、集群
单节点Redis存在的问题
- 数据丢失问题: 由于Redis是内存存储,如果没有持久化,那么服务器重启会丢失数据
解决办法:实现redis数据持久化,数据从内存写入磁盘当中。
- 并发问题: 单节点的Redis并发能力虽然不错,但是无法满足618这样的高并发场景。
解决办法:redis搭建主从集群,实现读写分离。 负载均衡的集群。
- 故障恢复问题: 如果redis宕机,则服务不可用,单节点无法保证持续可用状态。需要一种自动的故障修复手段
哨兵机制:利用redis的哨兵机制,实现健康检测和自动修复
- 存储能力问题: 基于内存,那么单节点难以满足海量数据存储。
搭建分片集群,利用插槽机制实现动态扩容
一、持久化解决数据丢失

1、RDB
RDB全称Redis Database Backup file(Redis数据备份文件),也叫做redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。
1.基础配置
-
如何让redis执行一次RDB呢?
sage和basage。 -
sava和bgsage的区别:
127.0.0.1:6379> save
OK
是由redis主进程来执行RDB,从而达到持久化的效果.
磁盘IO是比较慢的,主进程去执行IO读写,那么会阻塞所有命令。
127.0.0.1:6379> bgsave
Background saving started # 后台保存模式
立马返回结果,从而异步执行持久化。开启子进程执行RDB,避免主进程受到影响。
所以适合在redis正在运行时,去执行该命令。
3. 当正常退出redis服务时,会自动进行RDB保存一次结果

- 快照文件称为RDB文件,默认是保存在当前运行目录。也可以指定
432 dbfilename dump.rdb
# 更改rdb的文件名字,下次启动项目后,就会从这个文件里面进行拷贝恢复数据、以及持久化存储信息了。

-
Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下:
下面是默认配置的:3600 秒内有一条数据发生改变,就触发一次bgsave命令持久化
当然也可以自己配置,但是不要加注解# 。直接:save 5 1
5秒内有一条数据发生改变,就进行RDB持久化

-
是否压缩:建议不开启压缩,压缩消耗内存。

-
禁用RDB
save ""
2.bgsave主进程和子进程
bgsave开始会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入RDB文件。
Linux系统中,所有的进程都没办法直接操作物理内存,而是操作系统给每个进程分配虚拟内存,主进程操作的是虚拟内存,而后操作系统会维护虚拟内存和物理内存的映射关系表,称为页表。主进程操作虚拟内存,内存基于页表的映射关系,到达物理内存。从而达到对物理内存的读写操作。
在执行fork时是创建一个子进程,fork进程不是把内存进行拷贝,仅仅是把页表做拷贝到子进程,从而子进程也有了页表与内存的映射关系,也能操作物理内存了具体位置了。从而达到物理内存的共享。那么子进程就会读取内存中的数据,从而在写入磁盘中。
那么当子进程在执行读内存,写到磁盘的过程中,主进程能读写操作吗?
是可以的,为了避免主进程写数据,子进程读数据,造成脏数据的发生。fork采用的是copy-on-write技术:
当主进程执行读操作时,访问共享内存
当主进程执行写操作时,会拷贝一份数据,执行写数据。
当子进程进行读数据时,就将内存数据权限改为只读。此时此刻当主进程要写的时候进行拷贝数据一份,在完成主进程写的操作。

3.总结
RDB方式bgsave的基本流程
- fork主进程得到一个子进程,共享内存中的数据空间
- 子进程去共享空间中读取内存中的数据,并异步写入磁盘当中,也就是新的RDB文件。
- 子进程持久化完成以后,用新的RDB文件替换就的RDB。
RDB的缺点是:
- RDB执行间隔时间长,两次RDB之间写入数据有丢失风险
- fork子进程、压缩、写出RDB文件比较耗时
2、AOF
AOF全称(Append Only File)追加文件。Redis处理的每一个执行命令都会记录在AOD文件中,可以看做是命令日志文件。
恢复文件:读取日志文件。
- 默认是关闭AOF的,需要修改:
# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"
- AOF的命令记录的频率也可以通过redis.conf文件来配:
# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no

- 因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果。
Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:
AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写
auto-aof-rewrite-min-size 64mb

- 自己正常退出,正常登录时:数据会从AOF的日志文件,做加载

二、主从解决并发问题
搭建前需要了解的知识
单节点Redis的并发能力是有上限的,要进一步提高redis的并发能力,就需要搭建主从集群,实现读写分离。
为什么要读写分离呢?因为缓存里面读操作比较多,写操作比较少。
当客户端写操作去master,读操作去slave。这样解决了大量的读操作。
这样就需要master的数据同步到slave。

1、搭建主从架构
1.步骤
模拟本机搭建主从架构,那么需要准备三分不同的配置文件和目录,配置文件所在的目录页就是工作目录。
- 创建目录
我们创建三个文件夹,名字分别叫7001、7002、7003:
/tmp/7001 7002 7003
# 进入/tmp目录
cd /tmp
# 创建目录
mkdir 7001 7002 7003
- 拷贝配置文件到每个实例目录
然后将redis-6.2.4/redis.conf文件拷贝到三个目录中(在/tmp目录执行下列命令):
这样每个服务启动时都是根据自己的配置文件来进行启动
# 方式一:逐个拷贝
cp redis-6.2.4/redis.conf 7001
cp redis-6.2.4/redis.conf 7002
cp redis-6.2.4/redis.conf 7003
# 方式二:管道组合命令,一键拷贝
echo 7001 7002 7003 | xargs -t -n 1 cp redis-6.2.4/redis.conf
- 修改每个实例的端口、工作目录
修改每个文件夹内的配置文件,将端口分别修改为7001、7002、7003,将rdb文件保存位置都修改为自己所在目录(在/tmp目录执行下列命令):
每个项目都有自己的端口号,使用sed快速将默认端口替换成指定端口
sed -i -e 's/6379/7001/g' -e 's/dir .\//dir \/tmp\/7001\//g' 7001/redis.conf
sed -i -e 's/6379/7002/g' -e 's/dir .\//dir \/tmp\/7002\//g' 7002/redis.conf
sed -i -e 's/6379/7003/g' -e 's/dir .\//dir \/tmp\/7003\//g' 7003/redis.conf
- 修改每个实例的声明IP
虚拟机本身有多个IP,为了避免将来混乱,我们需要在redis.conf文件中指定每一个实例的绑定ip信息,格式如下:
指定自己的虚拟机IP地址, 下面用printf命令能一键进行指定
# redis实例的声明 IP
replica-announce-ip 192.168.150.101
每个目录都要改,我们一键完成修改(在/tmp目录执行下列命令):
# 逐一执行
sed -i '1a replica-announce-ip 192.168.150.101' 7001/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7002/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7003/redis.conf
# 或者一键修改
printf '%s\n' 7001 7002 7003 | xargs -I{} -t sed -i '1a replica-announce-ip 192.168.75.111' {}/redis.conf
- 了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:
# 第1个
redis-server 7001/redis.conf
# 第2个
redis-server 7002/redis.conf
# 第3个
redis-server 7003/redis.conf
- 如果要一键停止,可以运行下面命令:
printf '%s\n' 7001 7002 7003 | xargs -I{} -t redis-cli -p {} shutdown
2.开启主从关系:需要在“从节点”上面连接主节点
现在三个实例还没有任何关系,要配置主从可以使用replicaof 或者slaveof(5.0以前)命令。
有临时和永久两种模式:
-
修改配置文件(永久生效)
- 在redis.conf中添加一行配置:
slaveof <masterip> <masterport>
- 在redis.conf中添加一行配置:
-
使用redis-cli客户端连接到redis服务,执行slaveof命令(重启后失效):
slaveof <masterip> <masterport>
在5.0以后新增命令replicaof,与salveof效果一致。
通过redis-cli命令连接7002,执行下面命令:
# 连接 7002
redis-cli -p 7002
# 执行slaveof
slaveof 192.168.750.111 7001


然后连接 7001节点,查看集群状态:
# 连接 7001
redis-cli -p 7001
# 查看状态
info replication
结果:

3.测试 主能读写、从只能读
可以发现,只有在7001这个master节点上可以执行写操作,7002和7003这两个slave节点只能执行读操作
2、主从数据同步原理
1.全量同步
全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
性能比较差


master如何判断slave是不是第一次来同步数据?
这里会用到两个很重要的概念:
• Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
• offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。
因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据
简述全量同步的流程?
• slave节点请求增量同步
• master节点判断replid,发现不一致,拒绝增量同步
• master将完整内存数据生成RDB,发送RDB到slave
• slave清空本地数据,加载master的RDB
• master将RDB期间的命令记录在repl_baklog,并持续将log中的命
令发送给slave
• slave执行接收到的命令,保持与master之间的同步
2.增量同步
各种原因slave重启后,则执行增量同步。
master的【repl_baklog文件】数据存放在一个环形数组当中,当将整圈的数据填满以后,会从头开始覆盖数据。slave是从数组中同步数据。
当slave重启后,会根据自己的offset,去master同步数据。
如果数组没有覆盖住一整圈的数据时,会进行增量同步。
如果数组已经将salve关机前同步时【offset】数据覆盖住了,那么就会全量同步。

3、可以从以下几个方面来优化Redis主从就集群:
提高全量同步的性能:
- 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。
当要写RDB文件时,不写到磁盘了,写到网络的IO流中。直接发送给slave。减少了磁盘读写。
- Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO
减少全量同步:
3. 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能
4. 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力

简述全量同步和增量同步区别?
• 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
• 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave
什么时候执行全量同步?
• slave节点第一次连接master节点时
• slave节点断开时间太久,repl_baklog中的offset已经被覆盖时
什么时候执行增量同步?
• slave节点断开又恢复,并且在repl_baklog中能找到offset时
三、哨兵解决故障恢复
上述说到master负责读写,slave负责只读模式。那么master宕机怎么办呢?
用哨兵监控节点的状态,当发现master宕机那一刻,立即选择一个新的slave作为master节点,由于一直同步数据,所以slave有几乎完整的数据。将slave变成master也就是一瞬间的的事儿。从而整个集群依旧是健康的。 当之前master重启后,变成slave即可。 从而达到主备切换
1、哨兵的作用和原理
1.哨兵的介绍
哨兵Sentinel也是一个集群,如果哨兵挂掉一个,那么还会有其他哨兵进行工作。
RedisTemplate 客户端连接的是Sentinel哨兵。由哨兵告诉客户端主从地址,当主从发生切换后,哨兵会立即把状态变更告诉客户端
哨兵的作用:
- 监控:Sentinel会不断检查您的master和slave是否按预期工作
- 自动故障恢复:如果master故障,sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
- 通知:sentinel充当Reids客户端的服务发现来源,当集群发生故障转移时,会将最新消息推送给Redis的客户端。

2.服务状态监控
Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:
- 主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线。
- 客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。
一个sentinel发现是主观下线, 超过数量是客观下线
3. 选举新的master
一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:
• 首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点
• 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
• 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
• 最后是判断slave节点的运行id大小,越小优先级越高。
4. 如何实现故障转移
当选中了其中一个slave为新的master后(例如slave1),故障的转移的步骤如下:
slave1 master slave2Sentinel
• sentinel给备选的slave1节点发送slaveof no one命令,让该节
点成为master
• sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。
• 最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点

2、 搭建哨兵集群
这里我们搭建一个三节点形成的Sentinel集群,来监管之前的Redis主从集群

三个sentinel实例信息如下:
| 节点 | IP | PORT |
|---|---|---|
| s1 | 192.168.150.101 | 27001 |
| s2 | 192.168.150.101 | 27002 |
| s3 | 192.168.150.101 | 27003 |
- 我们创建三个文件夹,名字分别叫s1、s2、s3:
# 进入/tmp目录
cd /tmp
# 创建目录
mkdir s1 s2 s3
- 然后我们在s1目录创建一个sentinel.conf文件,添加下面的内容:
port 27001
sentinel announce-ip 192.168.150.101
sentinel monitor mymaster 192.168.150.101 7001 2
sentinel down-after-milliseconds mymaster 5000
sentinel failover-timeout mymaster 60000
dir "/tmp/s1"
解读:
port 27001:是当前sentinel实例的端口sentinel monitor mymaster 192.168.150.101 7001 2:指定主节点信息mymaster:主节点名称,自定义,任意写192.168.150.101 7001:主节点的ip和端口2:选举master时的quorum值
- 然后将s1/sentinel.conf文件拷贝到s2、s3两个目录中(在/tmp目录执行下列命令):
# 方式一:逐个拷贝
cp s1/sentinel.conf s2
cp s1/sentinel.conf s3
# 方式二:管道组合命令,一键拷贝
echo s2 s3 | xargs -t -n 1 cp s1/sentinel.conf
- 修改s2、s3两个文件夹内的配置文件,将端口分别修改为27002、27003:
sed -i -e 's/27001/27002/g' -e 's/s1/s2/g' s2/sentinel.conf
sed -i -e 's/27001/27003/g' -e 's/s1/s3/g' s3/sentinel.conf
- 为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:
# 第1个
redis-sentinel s1/sentinel.conf
# 第2个
redis-sentinel s2/sentinel.conf
# 第3个
redis-sentinel s3/sentinel.conf
测试:
7001是主节点 7002/7003是从节点
27001/27002/27003是哨兵机制
现在模拟将7001主节点进行宕机。
可以看到哨兵日志:
-
主观下线7001
-
客观下线,以及有2个了。(3各节点设的2个主观认为下线,则下线)
-
哨兵先进行主节点,哨兵27003当成了领导者。因为去做故障恢复一个主节点去做就行了。
进行选举新的主节点。找到领导者。
策略是:谁先发现的宕机,谁就去选择主节点:7003先发现的,那么7003选择的是7002是主节点。 -
slaveof-no noe slave …7002 说明将7002选为主节点

-
进行广播告诉7003说7002是master了,将7001作为从节点。

-
将7001切换成slave节点

3、 RedisTemplate的哨兵模式
在Sentinel集群监管下的Redis主从集群,其节点会因为自动故障转移而发生变化,Redis的客户端必须感知这种变化,及时更新连接信息。Spring的RedisTemplate底层利用lettuce实现了节点的感知和自动切换。
RedisTemplate的哨兵模式
- 在pom文件中引入redis的starter依赖:
- 然后在配置文件application.yml中指定sentinel相关信息:
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
spring:
redis:
sentinel:
master: mymaster # 指定master名称
nodes: # 指定redis-sentinel集群信息
- 192.168.150.101:27001
- 192.168.150.101:27002
- 192.168.150.101:27003
- 配置主从读写分离
@Bean
public LettuceClientConfigurationBuilderCustomizer configurationBuilderCustomizer(){
return configBuilder -> configBuilder.readFrom(ReadFrom.REPLICA_PREFERRED);
}
这里的ReadFrom是配置Redis的读取策略,是一个枚举,包括下面选择:
• MASTER:从主节点读取
• MASTER_PREFERRED:优先从master节点读取,master不可用才读取replica
• REPLICA:从slave(replica)节点读取
• REPLICA _PREFERRED:优先从slave(replica)节点读取,所有的slave都不可用才读取master
启动项目,分析日志:
1. 尝试连接sentinel,选择的是27001,然后进行连接


2. 连接好了哨兵,那么从哨兵获取集群的真实地址。
采取的是订阅的机制,订阅集群的状态【subscriptionCommand】。
哨兵就会把集群信息发送给客户端。
得到主节点 和从节点:


3. 将三个节点全部建立连接:

4.模拟挂机,在重启。查看客户端日志:
-
尝试连接哨兵信息


-
获取集群信息:

四、分片集群解决存储能力
1.分片集群结构
主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:
• 海量数据存储问题
• 高并发写的问题
使用分片集群可以解决上述问题,分片集群特征:
• 集群中有多个master,每个master保存不同数据
• 每个master都可以有多个slave节点
• master之间通过ping监测彼此健康状态
• 客户端请求可以访问集群任意节点,最终都会被转发到正确节点

创建集群的步骤:1和2:

1.准备实例和配置
同一台虚拟机中开启6个redis实例
集群配置:三个master节点、三个slave节点
分别放在/tmp/7001 7002 7003 8001 8002 8003
| IP | PORT | 角色 |
|---|---|---|
| 192.168.150.101 | 7001 | master |
| 192.168.150.101 | 7002 | master |
| 192.168.150.101 | 7003 | master |
| 192.168.150.101 | 8001 | slave |
| 192.168.150.101 | 8002 | slave |
| 192.168.150.101 | 8003 | slave |
- 解压好redis的安装包 tar -zxvf
- 安装redis服务的依赖。
yum install -y gcc tcl - 安装redis
make && make install - 将每个节点都有自己的redis.conf 配置:举例如下:
port 6379
# 开启集群功能
cluster-enabled yes
# 集群的配置文件名称,不需要我们创建,由redis自己维护
cluster-config-file /tmp/6379/nodes.conf
# 节点心跳失败的超时时间
cluster-node-timeout 5000
# 持久化文件存放目录
dir /tmp/6379
# 绑定地址
bind 0.0.0.0
# 让redis后台运行
daemonize yes
# 注册的实例ip
replica-announce-ip 192.168.150.101
# 保护模式
protected-mode no
# 数据库数量
databases 1
# 日志
logfile /tmp/6379/run.log
- 创建6个新目录,将reids.conf复制到不同目录。
echo 7001 7002 7003 8001 8002 8003 | xargs -t -n 1 cp redis.conf - 修改每个目录下的redis.conf,将其中的6379修改为与所在目录一致:
会将配置文件中的6379 分别改为 7001 7002 7003 8001 8002 8003
# 进入/tmp目录
cd /tmp
# 修改配置文件
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t sed -i 's/6379/{}/g' {}/redis.conf
- 一键启动服务:
# 一键启动所有服务
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-server {}/redis.conf
通过ps查看状态:
ps -ef | grep redis
如果要关闭所有进程,可以执行命令:
ps -ef | grep redis | awk '{print $2}' | xargs kill
或者(推荐这种方式):
printf '%s\n' 7001 7002 7003 8001 8002 8003 | xargs -I{} -t redis-cli -p {} shutdown
2.创建集群
虽然服务启动了,但是目前每个服务之间都是独立的,没有任何关联。
我们需要执行命令来创建集群,在Redis5.0之前创建集群比较麻烦,5.0之后集群管理命令都集成到了redis-cli中。
1)Redis5.0以后
我们使用的是Redis6.2.4版本,集群管理以及集成到了redis-cli中,格式如下:
redis-cli --cluster create --cluster-replicas 1 192.168.150.101:7001 192.168.150.101:7002 192.168.150.101:7003 192.168.150.101:8001 192.168.150.101:8002 192.168.150.101:8003
命令说明:
redis-cli --cluster或者./redis-trib.rb:代表集群操作命令create:代表是创建集群--replicas 1或者--cluster-replicas 1:指定集群中每个master的副本个数为1,此时节点总数 ÷ (replicas + 1)得到的就是master的数量。因此节点列表中的前n个就是master,其它节点都是slave节点,随机分配到不同master
运行后的样子:

通过命令可以查看集群状态:
redis-cli -p 7001 cluster nodes

3.测试:
尝试连接7001节点,存储一个数据:
集群操作时,需要给redis-cli加上-c参数才可以:
redis-cli -c -p 7001
# 连接
redis-cli -c -p 7001
# 存储数据
set num 123
# 读取数据
get num
# 再次存储
set a 1

2、散列插槽
Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:

数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:
• key中包含"{}",且“{}”中至少包含1个字符,“{}”中的部分是有效部分
• key中不包含“{}”,整个key都是有效部分
例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到
一个hash值,然后对16384取余,得到的结果就是slot值

Redis如何判断某个key应该在哪个实例?
• 将16384个插槽分配到不同的实例
• 根据key的有效部分计算哈希值,对16384取余
• 余数作为插槽,寻找插槽所在实例即可
如何将同一类数据固定的保存在同一个Redis实例?
• 这一类数据使用相同的有效部分,例如key都以{typeId}为前缀

3、 集群伸缩【动态添加删除节点】
添加一个节点到集群
redis-cli --cluster提供了很多操作集群的命令,可以通过下面方式查看:

比如,添加节点的命令


- 启动节点
- 设为master节点:
redis-cli --cluster add-node 自己ip:端口 已存在的ip:端口
- 将num的插槽分配给7004:
1.查看num 的插槽:
2.将2764的插槽,分配给7004。那么num就会存到7004上

- 分配插槽的:
1.重新分片的的命令:reshard 指定要分ip端口
2.你想移动多少插槽:num的范围是2765,那么移动3000
3.谁接收这部分插槽:比如7004。得需要写7004的ID
4.source是从哪里做的数据源:从7001进行拷贝。需要写7001的ID
5.结束命令:done
6.要不要移动300个插槽:yes


4、 故障转移
当集群中有一个master宕机会发生什么呢?
- 首先是该实例与其它实例失去连接
- 然后是疑似宕机:

- 最后是确定下线,自动提升一个slave为新的master

redis集群支持自动主从切换
手动进行故障转移,数据迁移:
利用cluster failover命令【新节点执行】可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:
手动的Failover支持三种不同模式:
• 缺省:默认的流程,如图1~6歩
• force:省略了对offset的一致性校验
• takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见

CLUSTER FAILOVER
sluster failover


5、 RedisTemplate访问分片集群
RedisTemplate底层同样基于lettuce实现了分片集群的支持,而使用的步骤与哨兵模式基本一致:
- 引入redis的starter依赖
- 配置分片集群地址
- 配置读写分离
与哨兵模式相比,其中只有分片集群的配置方式略有差异,如下:
spring:
redis:
cluster:
nodes: # 指定分片集群的每一个节点信息
- 192.168.150.101:7001
- 192.168.150.101:7002
- 192.168.150.101:7003
- 192.168.150.101:8001
- 192.168.150.101:8002
- 192.168.150.101:8003
Redis分布式缓存与分片集群:故障恢复、扩展与优化
本文介绍了Redis的持久化策略、主从复制优化高并发,哨兵机制确保故障恢复,以及分片集群解决存储与扩展问题。详细探讨了RDB和AOF持久化、主从架构搭建、哨兵部署和RedisTemplate的哨兵与分片模式应用。



406

被折叠的 条评论
为什么被折叠?



