本性上确界与本性下确界
数学中, 本性上确界 和本性下确界的概念与上确界和下确界的概念相关,但适用于测度论与泛函分析,它通常处理的命题不是对集合里的所有元素有效,而是几乎处处,即除去零测集。
目录
- 上界 upper bound
- 上确界 supremum
- 本性上确界 essential supremum
- 上确界 supremum
- 定义
- 例子
- 性质
- 参见
- 注释
定义
设
f
:
X
→
R
f:X\to\mathbb R
f:X→R 是定义在集合
X
X
X上的实值函数,称实数
a
a
a是
f
f
f的上界,若
f
(
x
)
≤
a
,
∀
x
∈
X
f(x)\leq a,\forall x\in X
f(x)≤a,∀x∈X,即,如果集合
f
−
1
(
a
,
∞
)
=
{
x
∈
X
:
f
(
x
)
>
a
}
f^{-1}(a,\infty) = \{x\in X:f(x)\gt a\}
f−1(a,∞)={x∈X:f(x)>a}
为空。设
U
f
=
{
a
∈
R
:
f
−
1
(
a
,
∞
)
=
∅
}
U_f = \{a\in \mathbb R:f^{-1}(a,\infty) = \emptyset\}
Uf={a∈R:f−1(a,∞)=∅}
是
f
f
f的上界集合,则
f
f
f的上确界定义为
sup
f
=
inf
U
f
,
\sup f = \inf U_f,
supf=infUf,
若上界集合非空,否则
sup
f
=
+
∞
.
\sup f = +\infty.
supf=+∞.
或者,对某些
a
∈
R
a\in \mathbb R
a∈R 有
f
(
x
)
≤
a
,
∀
x
∈
X
f(x)\leq a,\forall x\in X
f(x)≤a,∀x∈X,则
sup
f
≤
a
.
\sup f \leq a.
supf≤a.
确界定理:有上(下)界必有上(下)确界。
另外,假设
(
X
,
Σ
;
μ
)
(X,\Sigma;\mu)
(X,Σ;μ)是测度空间,简单起见,假设函数
f
f
f是可测的。称数
a
a
a是
f
f
f的本性上界,若可测集
f
−
1
(
a
,
∞
)
f^{-1}(a,\infty)
f−1(a,∞) 是零测集,1 即,如果
f
(
x
)
≤
a
,
a
.
e
.
x
∈
X
.
f(x)\leq a,a.e.x\in X.
f(x)≤a,a.e.x∈X. 设
U
f
e
s
s
=
{
a
∈
R
:
μ
(
f
−
1
(
a
,
∞
)
)
=
0
}
U_f^{ess} = \{a\in \mathbb R: \mu(f^{-1}(a,\infty)) = 0\}
Ufess={a∈R:μ(f−1(a,∞))=0}
是本性上界集合,则本性上确界类似地定义为
e
s
s
sup
f
=
inf
U
f
e
s
s
,
\mathtt {ess} \sup f = \inf U_f^{ess},
esssupf=infUfess,
若
U
f
e
s
s
≠
∅
U_f^{ess}\neq \varnothing
Ufess=∅,否则
e
s
s
sup
f
=
+
∞
.
\mathtt {ess} \sup f = +\infty.
esssupf=+∞.
或者,对某些
a
∈
R
a\in \mathbb R
a∈R 有
f
(
x
)
≤
a
,
a
.
e
.
x
∈
X
f(x)\leq a,a.e.x\in X
f(x)≤a,a.e.x∈X,则
e
s
s
sup
f
≤
a
.
\mathtt {ess} \sup f \leq a.
esssupf≤a.
完全以同样的方式将本性下确界
定义为本性下界的上确界,即,
e
s
s
inf
f
=
sup
{
b
∈
R
:
μ
(
{
x
:
f
(
x
)
<
b
}
)
=
0
}
,
\mathtt {ess} \inf f = \sup \{b\in \mathbb R: \mu(\{x: f(x) \lt b\}) = 0\},
essinff=sup{b∈R:μ({x:f(x)<b})=0},
若本性下界集合非空,否则
e
s
s
inf
f
=
−
∞
.
\mathtt {ess} \inf f = -\infty.
essinff=−∞.
例子
-
实轴上考虑Lebesgue测度及其对应的 σ \sigma σ-代数 Σ . \Sigma. Σ. 由以下公式来定义函数 f f f
f ( x ) = { 5 , if x = 1 − 4 , if x = − 1 2 , otherwise. f(x) = \begin{cases} 5, & \text{if $x=1$} \\ -4, & \text{if $x=-1$} \\ 2, & \text{otherwise.} \end{cases} f(x)=⎩⎪⎨⎪⎧5,−4,2,if x=1if x=−1otherwise.
函数的上确界(最大值)是5,下确界(最小值)是-4,但却分别仅在集合{1}和{-1}上取得,而它们的测度为零。在其他点处,函数取值为2. 因此,这个函数的本性上确界和本性下确界都是2。 -
考虑函数
f ( x ) = { x 3 , if x ∈ Q arctan x , if x ∈ R ∖ Q f(x) = \begin{cases} x^3, & \text{if $x\in \mathbb Q$} \\ \arctan x, & \text{if $x\in \mathbb R \setminus \mathbb Q$} \end{cases} f(x)={x3,arctanx,if x∈Qif x∈R∖Q
其中 Q \mathbb Q Q表示有理数。该函数自上到下都是无界的,因此它的上确界和下确界分别是 ∞ \infty ∞和 − ∞ -\infty −∞。然而,从Lebesgue测度的角度来看,有理数集合是测度为零的集合;因此,最重要的是这个集合的补集,其中函数是以 arctan x x x 的形式给出的。因此,本性上确界是π/2,而本性下确界是−π/2. -
考虑函数
f ( x ) = { 1 / x , if x ≠ 0 0 , if x = 0 f(x) = \begin{cases} 1/x, & \text{if $x\neq 0$} \\ 0, & \text{if $x=0$} \end{cases} f(x)={1/x,0,if x=0if x=0
则对 ∀ a ∈ R \forall a\in \mathbb R ∀a∈R,有 μ ( { x ∈ R : 1 / x > a } ) ≥ 1 ∣ a ∣ \mu(\{ x\in \mathbb R : 1/x\gt a \}) \ge \frac{1}{\vert a \vert} μ({x∈R:1/x>a})≥∣a∣1, 所以 U f = ∅ U_f=\varnothing Uf=∅且 e s s sup f = + ∞ . \mathtt {ess} \sup f = +\infty. esssupf=+∞.
性质
- 若 μ ( X ) > 0 \mu(X) \gt 0 μ(X)>0,我们有 inf f ≤ e s s inf f ≤ e s s sup f ≤ sup f . \inf f \leq \mathtt {ess} \inf f \leq \mathtt {ess} \sup f \leq \sup f. inff≤essinff≤esssupf≤supf. 若 X X X测度为零,则 e s s sup f = − ∞ \mathtt {ess} \sup f = -\infty esssupf=−∞且 e s s inf f = + ∞ . \mathtt {ess} \inf f = +\infty. essinff=+∞.
- e s s sup ( f g ) ≤ ( e s s sup f ) ( e s s sup g ) \mathtt {ess} \sup (fg) \leq (\mathtt {ess} \sup f)(\mathtt {ess} \sup g) esssup(fg)≤(esssupf)(esssupg) 只须右边两项均非负。
参见
注释
对于不可测函数,定义需要修改,通过假设 f − 1 ( a , ∞ ) f^{-1}(a,\infty) f−1(a,∞) 包含在零测集。或者可以假设测度是完备的 ↩︎