LeetCode 454:四数相加 II
题目描述
给定四个包含整数的数组列表 A , B , C , D ,计算有多少个元组 (i, j, k, l) ,使得 A[i] + B[j] + C[k] + D[l] = 0。
为了使问题简单化,所有的 A, B, C, D 具有相同的长度 N,且 0 ≤ N ≤ 500 。所有整数的范围在 -228 到 228 - 1 之间,最终结果不会超过 231 - 1 。
例如:
输入:
A = [ 1, 2]
B = [-2,-1]
C = [-1, 2]
D = [ 0, 2]
输出:
2
解释:
两个元组如下:
1.(0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0
2.(1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
解题
没有什么特别奇妙的法子,最暴力的方法是计算所有四数相加的组合,统计和为0的组合数目,时间复杂度 ( O ( n 4 ) ) (O(n^{4})) (O(n4)),也可以计算三个数相加的所有组合,再用两数相加的思路解决,时间复杂度 ( O ( n 3 ) ) (O(n^{3})) (O(n3)),如果分别计算两数相加所有组合,再用两数相加的思路解决,时间复杂度 O ( n 2 ) O(n^{2}) O(n2)。
class Solution {
public:
int fourSumCount(vector<int>& A, vector<int>& B, vector<int>& C, vector<int>& D) {
unordered_map<int, int>sum_ab_count;
for (auto &a : A){
for (auto &b :B){
++sum_ab_count[a+b];
}
}
int count(0);
for (auto &c : C){
for (auto &d :D){
auto iter = sum_ab_count.find(-c-d);
if (iter != sum_ab_count.end())
count += iter->second;
}
}
return count;
}
};