ES6学习笔记- 箭头函数

ES6允许使用“箭头”(=>)定义函数。

var f = v => v;

上面的箭头函数等同于:

var f = function(v) {
  return v;
};

使用注意点

箭头函数有几个使用注意点。

(1)函数体内的this对象,就是定义时所在的对象,而不是使用时所在的对象。

(2)不可以当作构造函数,也就是说,不可以使用new命令,否则会抛出一个错误。

(3)不可以使用arguments对象,该对象在函数体内不存在。如果要用,可以用Rest参数代替。

(4)不可以使用yield命令,因此箭头函数不能用作Generator函数。

上面四点中,第一点尤其值得注意。this对象的指向是可变的,但是在箭头函数中,它是固定的。

var id = 21;
function foo() {
  setTimeout(() => {
    console.log('id:', this.id);
  }, 100);
}

foo.call({ id: 42 });

// 42

箭头函数可以让setTimeout里面的this,绑定定义时所在的作用域,而不是指向运行时所在的作用域

function Timer() {
  this.s1 = 0;
  this.s2 = 0;
  // 箭头函数
  setInterval(() => this.s1++, 1000);
  // 普通函数
  setInterval(function () {
    this.s2++;
  }, 1000);
}

var timer = new Timer();

setTimeout(() => console.log('s1: ', timer.s1), 3100);
setTimeout(() => console.log('s2: ', timer.s2), 3100);
// s1: 3
// s2: 0

上面代码中,Timer函数内部设置了两个定时器,分别使用了箭头函数和普通函数。前者的this绑定定义时所在的作用域(即Timer函数),后者的this指向运行时所在的作用域(即全局对象)。所以,3100毫秒之后,timer.s1被更新了3次,而timer.s2一次都没更新。

 

 

 

 

 

 

 

 

 

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值