python简单代码

日期生成

很多时候我们需要批量生成日期,方法有很多,这里分享两段代码

获取过去 N 天的日期

import datetime
 
def get_nday_list(n):
    before_n_days = []
    for i in range(1, n + 1)[::-1]:
        before_n_days.append(str(datetime.date.today() - datetime.timedelta(days=i)))
    return before_n_days
 
a = get_nday_list(30)
print(a)

Output:

[‘2021-12-23’, ‘2021-12-24’, ‘2021-12-25’, ‘2021-12-26’, ‘2021-12-27’, ‘2021-12-28’, ‘2021-12-29’, ‘2021-12-30’, ‘2021-12-31’, ‘2022-01-01’, ‘2022-01-02’, ‘2022-01-03’, ‘2022-01-04’, ‘2022-01-05’, ‘2022-01-06’, ‘2022-01-07’, ‘2022-01-08’, ‘2022-01-09’, ‘2022-01-10’, ‘2022-01-11’, ‘2022-01-12’, ‘2022-01-13’, ‘2022-01-14’, ‘2022-01-15’, ‘2022-01-16’, ‘2022-01-17’, ‘2022-01-18’, ‘2022-01-19’, ‘2022-01-20’, ‘2022-01-21’]

生成一段时间区间内的日期

import datetime
 
def create_assist_date(datestart = None,dateend = None):
    # 创建日期辅助表
 
    if datestart is None:
        datestart = '2016-01-01'
    if dateend is None:
        dateend = datetime.datetime.now().strftime('%Y-%m-%d')
 
    # 转为日期格式
    datestart=datetime.datetime.strptime(datestart,'%Y-%m-%d')
    dateend=datetime.datetime.strptime(dateend,'%Y-%m-%d')
    date_list = []
    date_list.append(datestart.strftime('%Y-%m-%d'))
    while datestart<dateend:
        # 日期叠加一天
        datestart+=datetime.timedelta(days=+1)
        # 日期转字符串存入列表
        date_list.append(datestart.strftime('%Y-%m-%d'))
    return date_list
 
d_list = create_assist_date(datestart='2021-12-27', dateend='2021-12-30')
d_list

Output:

[‘2021-12-27’, ‘2021-12-28’, ‘2021-12-29’, ‘2021-12-30’]

保存数据到CSV

保存数据到 CSV 是太常见的操作了,分享一段我个人比较喜欢的写法

def save_data(data, date):
    if not os.path.exists(r'2021_data_%s.csv' % date):
        with open("2021_data_%s.csv" % date, "a+", encoding='utf-8') as f:
            f.write("标题,热度,时间,url\n")
            for i in data:
                title = i["title"]
                extra = i["extra"]
                time = i['time']
                url = i["url"]
                row = '{},{},{},{}'.format(title,extra,time,url)
                f.write(row)
                f.write('\n')
    else:
        with open("2021_data_%s.csv" % date, "a+", encoding='utf-8') as f:
            for i in data:
                title = i["title"]
                extra = i["extra"]
                time = i['time']
                url = i["url"]
                row = '{},{},{},{}'.format(title,extra,time,url)
                f.write(row)
                f.write('\n')

带背景颜色的 Pyecharts

Pyecharts 作为 Echarts 的优秀 Python 实现,受到众多开发者的青睐,用 Pyecharts 作图时,使用一个舒服的背景也会给我们的图表增色不少

以饼图为例,通过添加 JavaScript 代码来改变背景颜色

def pie_rosetype(data) -> Pie:
    background_color_js = (
    "new echarts.graphic.LinearGradient(0, 0, 0, 1, "
    "[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)"
)
    c = (
        Pie(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js)))
        .add(
            "",
            data,
            radius=["30%", "75%"],
            center=["45%", "50%"],
            rosetype="radius",
            label_opts=opts.LabelOpts(formatter="{b}: {c}"),
        )
        .set_global_opts(title_opts=opts.TitleOpts(title=""),
                        )
    )
    return c

requests 库调用

据统计,requests 库是 Python 家族里被引用的最多的第三方库,足见其江湖地位之高大!

发送 GET 请求

import requests
 
 
headers = {
    'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36',
  'cookie': 'some_cookie'
}
response = requests.request("GET", url, headers=headers)

发送 POST 请求

import requests
 
 
payload={}
files=[]
headers = {
    'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36',
  'cookie': 'some_cookie'
}
response = requests.request("POST", url, headers=headers, data=payload, files=files)

根据某些条件循环请求,比如根据生成的日期

def get_data(mydate):
    date_list = create_assist_date(mydate)
    url = "https://test.test"
    files=[]
    headers = {
        'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36',
        'cookie': ''
        }
    for d in date_list:
        payload={'p': '10',
        'day': d,
        'nodeid': '1',
        't': 'itemsbydate',
        'c': 'node'}
        for i in range(1, 100):
            payload['p'] = str(i)
            print("get data of %s in page %s" % (d, str(i)))
            response = requests.request("POST", url, headers=headers, data=payload, files=files)
            items = response.json()['data']['items']
            if items:
                save_data(items, d)
            else:
                break

Python 操作各种数据库

操作 Redis

连接 Redis

import redis
 
 
def redis_conn_pool():
    pool = redis.ConnectionPool(host='localhost', port=6379, decode_responses=True)
    rd = redis.Redis(connection_pool=pool)
    return rd

写入 Redis

from redis_conn import redis_conn_pool
 
 
rd = redis_conn_pool()
rd.set('test_data', 'mytest')

操作 MongoDB

连接 MongoDB

from pymongo import MongoClient
 
 
conn = MongoClient("mongodb://%s:%s@ipaddress:49974/mydb" % ('username', 'password'))
db = conn.mydb
mongo_collection = db.mydata

批量插入数据

res = requests.get(url, params=query).json()
commentList = res['data']['commentList']
mongo_collection.insert_many(commentList)

操作 MySQL

连接 MySQL

import MySQLdb
 
# 打开数据库连接
db = MySQLdb.connect("localhost", "testuser", "test123", "TESTDB", charset='utf8' )
 
# 使用cursor()方法获取操作游标 
cursor = db.cursor()

执行 SQL 语句

# 使用 execute 方法执行 SQL 语句
cursor.execute("SELECT VERSION()")
 
# 使用 fetchone() 方法获取一条数据
data = cursor.fetchone()
 
print "Database version : %s " % data
 
# 关闭数据库连接
db.close()

Output:

Database version : 5.0.45

本地文件整理

整理文件涉及需求的比较多,这里分享的是将本地多个 CSV 文件整合成一个文件

import pandas as pd
import os
 
 
df_list = []
for i in os.listdir():
    if "csv" in i:
        day = i.split('.')[0].split('_')[-1]
        df = pd.read_csv(i)
        df['day'] = day
        df_list.append(df)
df = pd.concat(df_list, axis=0)
df.to_csv("total.txt", index=0)

多线程代码

多线程也有很多实现方式,我们选择自己最为熟悉顺手的方式即可

import threading
import time
 
exitFlag = 0
 
class myThread (threading.Thread):
    def __init__(self, threadID, name, delay):
        threading.Thread.__init__(self)
        self.threadID = threadID
        self.name = name
        self.delay = delay
    def run(self):
        print ("开始线程:" + self.name)
        print_time(self.name, self.delay, 5)
        print ("退出线程:" + self.name)
 
def print_time(threadName, delay, counter):
    while counter:
        if exitFlag:
            threadName.exit()
        time.sleep(delay)
        print ("%s: %s" % (threadName, time.ctime(time.time())))
        counter -= 1
 
# 创建新线程
thread1 = myThread(1, "Thread-1", 1)
thread2 = myThread(2, "Thread-2", 2)
 
# 开启新线程
thread1.start()
thread2.start()
thread1.join()
thread2.join()
print ("退出主线程")

异步编程代码

异步爬取网站

import asyncio
import aiohttp
import aiofiles
 
async def get_html(session, url):
    try:
        async with session.get(url=url, timeout=8) as resp:
            if not resp.status // 100 == 2:
                print(resp.status)
                print("爬取", url, "出现错误")
            else:
                resp.encoding = 'utf-8'
                text = await resp.text()
                return text
    except Exception as e:
        print("出现错误", e)
        await get_html(session, url)

使用异步请求之后,对应的文件保存也需要使用异步,即是一处异步,处处异步

async def download(title_list, content_list):
    async with aiofiles.open('{}.txt'.format(title_list[0]), 'a',
                             encoding='utf-8') as f:
        await f.write('{}'.format(str(content_list)))

原文链接:https://blog.csdn.net/z099164/article/details/122686474

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值