移动机器人的轮径标定是确保其运动精度和导航准确性的关键步骤。以下是常用的轮径标定方法及详细步骤:
1. 基于运动学模型的标定方法
原理
通过测量机器人实际运动距离(或角度)与编码器理论值的偏差,反推出实际轮径。
步骤
-
直线运动法:
- 让机器人沿直线行驶固定距离(如5米),记录编码器脉冲数。
- 实际距离通过外部测量(卷尺、激光测距仪)或高精度传感器(如视觉/激光SLAM)获取。
- 计算轮径:
[
D_{\text{实际}} = \frac{\text{实际距离}}{\text{编码器脉冲数} \times \frac{\pi}{N}}}
]
其中 (N) 为每转脉冲数,(D_{\text{标称}}) 为理论轮径。
-
旋转运动法:
- 让机器人原地旋转(360°),记录左右轮编码器差值。
- 实际角度由陀螺仪或视觉标记验证。
- 计算轮径差或修正值:
[
D_{\text{实际}} = \frac{\text{实际旋转角度} \times \text{轮距}}{\text{编码器差值}}
]
2. 基于外部传感器的标定方法
工具
- 激光雷达(LiDAR)
- 视觉标记(ArUco码)
- 运动捕捉系统(如OptiTrack)
步骤
- 数据采集:
- 机器人执行特定轨迹(如矩形或圆形),同时记录编码器数据和外部传感器位姿。
- 参数优化:
- 建立运动学模型(如差速模型)与传感器数据的误差函数。
- 使用最小二乘法或非线性优化(如Levenberg-Marquardt算法)优化轮径参数。
3. 误差分析与补偿
- 地面打滑:在光滑或不平整地面标定会导致误差,需多次实验取均值。
- 编码器噪声:采用滑动平均或卡尔曼滤波处理数据。
- 轮径-轮距耦合误差:同时标定轮径和轮距(轴距)参数。
4. 在线标定方法(动态调整)
- 卡尔曼滤波:融合IMU、里程计和外部传感器数据,实时更新轮径。
- 视觉里程计辅助:通过摄像头或深度相机观测环境特征,校正轮径参数。
5. 标定流程示例
- 准备工作:
- 确保地面平整,避免打滑。
- 校准外部传感器(如LiDAR、相机)。
- 数据采集:
- 执行直线、旋转或“8”字形运动,记录编码器和传感器数据。
- 参数计算:
- 通过理论模型与实测数据对比,计算实际轮径。
- 验证:
- 重新执行不同轨迹,验证标定后里程计精度。
注意事项
- 多轮机器人:全向轮或麦克纳姆轮需单独标定每个轮的直径。
- 温度影响:橡胶轮胎可能因温度膨胀,需定期复标。
- 代码实现:标定算法可集成至ROS(Robot Operating System)中,利用
tf
和odom
话题进行验证。
通过上述方法,可显著提高移动机器人的定位精度,减少航迹推算(Dead Reckoning)的累积误差。实际应用中建议结合多传感器数据,并定期复检轮径参数。