- 博客(6)
- 收藏
- 关注
原创 西瓜书笔记(第六章 支持向量机)
西瓜书笔记(第六章 支持向量机)6.1 间隔与支持向量直观上看,应该去找位于两类训练样本“正中间”的划分超平面,即图6.1中红色的那个,因为该划分超平面对训练样本局部扰动的“容忍”性最好.例如,由于训练集的局限性或噪声的因素,训练集外的样本可能比图6.1中的训练样本更接近两个类的分隔界,这将使许多划分超平面出现错误,而红色的超平面受影响最小,换言之,这个划分超平面所产生的分类结果是最鲁棒的,对未见示例的泛化能力最强。6.2 对偶问题6.3 核函数在本章前面的讨论中,我们假设训练样本是
2022-01-27 23:41:36 819
原创 西瓜书第五章学习笔记——神经网络
西瓜书第五章学习笔记——神经网络5.1 神经元模型神经网络(neural networks)方面的研究很早就已出现,今天“神经网络”已是一个相当大的、多学科交叉的学科领域,各相关学科对神经网络的定义多种多样,本书采用目前使用得最广泛的一种,即“神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应”[Kohonen,1988],我们在机器学习中谈论神经网络时指的是“神经网络学习”,或者说,是机器学习与神经网络这两个学科领域的交叉部分。在上
2022-01-23 20:20:59 831
原创 西瓜书第四章学习笔记——决策树
4.1 基本流程决策树(decision tree)是一类常见的机器学习方法,以二分类任务为例,我们希望从给定训练数据集学得一个模型用以对新示例进行分类,这个把样本分类的任务,可看作对“当前样本属于正类吗?"这个问题的“决策”或“判定”过程,顾名思义,决策树是基于树结构来进行决策的,这恰是人类在面临决策问题时一种很自然的处理机制。显然 决策过程的最终结论对应了我们所希望的判定结果。一般的,一棵决策树包含一个根结点、若干个内部结点和若干个叶结点;叶结点对应于决策结果,其他每个结点则对应于一个属性测试;每
2022-01-20 20:34:53 482
原创 机器学习笔记(第三章 线性模型)
西瓜书笔记(第3章 线性模型)3.1 基本形式线性模型(linear model) 试图学得一个通过属性的线性组合来进行 预测的函数,即f(x)=ω1x1+ω2x2+...+ωdxd+bf(x)=\omega _1x_1+\omega _2x_2+...+\omega _dx_d+bf(x)=ω1x1+ω2x2+...+ωdxd+b一般用向量形式写成f(x)=ωTx+bf(x)=\omega^Tx+bf(x)=ωTx+b线性模型形式简单、易于建模,但却蕴涵着机器学习中一些重要
2022-01-16 21:11:23 870
原创 西瓜书笔记(1,2章)
西瓜书笔记(1,2章)1.绪论1.1 基本术语预测的是离散值——“分类(classification)”;预测的是连续值——“回归(regression)”泛化(generalization)——学得模型适用于新样本的能力1.5 发展历程机器学习是人工智能研究发展到一定阶段的必然产物。推理期&知识期二十世纪五十年代到七十年代初——人工智能研究处于推理期,认为只要能赋予机器逻辑推理的能力,机器就能拥有智能。(“逻辑推理家”程序证明数学定理)(但发现仅有逻辑不够,还需获得知识)五
2022-01-11 18:34:00 262
原创 SLAM自学笔记(一)
博主本人于大二时大创选题做无人机SLAM,但是当时每个队员都在忙其他事,于是就只是草草水过成功结项了。现已大四,毕设再次想做于无人机SLAM有关的项目,遂重新学起以扎实功底,实事求是。主要参考为《视觉SLAM十四讲》(第二版)书中源码 https://github.com/gaoxiang12/slambook2所需基础:高数线代概率论、C++、Linux基础第一讲:预备知识需再深入学习C++中的STL,C++11标准,学习Vim(但只用作文本编辑器,不建议用成IDE)第二讲:初识SLAM传感
2021-11-25 20:27:50 2274
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人