Prim算法求最小生成树
题目描述
给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。
给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。
由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。
输入格式
第一行包含两个整数n和m。
接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。
数据范围
1
≤
n
≤
500
,
1≤n≤500,
1≤n≤500,
1
≤
m
≤
105
,
1≤m≤105,
1≤m≤105,
图中涉及边的边权的绝对值均不超过10000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
Solution
import java.util.*;
import java.io.*;
class Main{
static final int INF = 0x3f3f3f3f;
static final int N = 510;
// 邻接矩阵存图
static int[][] g = new int[N][N];
// 记录 i 点到当前最小生成树的距离
static int[] dist = new int[N];
// 标记 i 点是否已经在最小生成树中
static boolean[] flag = new boolean[N];
// 存储最小生成树的距离
static int res = 0;
public static int prim(int n){
Arrays.fill(dist, INF);
dist[1] = 0;
// 迭代 n 次
for(int i = 1; i <= n; i++){
// 找集合外距离集合最近的点
// 用 t 来存储该点的序号
int t = -1;
for(int j = 1; j <= n; j++){
if(!flag[j] &&(t == -1 || dist[j] < dist[t]))
t = j;
}
flag[t] = true;
// 如果所有点距离集合的距离都为INF,即不可达,则说明没有最小生成树
if(dist[t] == INF) return INF;
res += dist[t];
// 更新所有点到集合的距离
// 因为就新加了 t 点,所以就比较一下各个点到 t 的距离与原来的dist就行了
// 注意这一句要放在 res += dist[t]之后
// 因为如果有自环 dist[t] = Math.min(dist[t], g[t][t]);这样距离就变了
for(int j = 1; j <= n; j++) dist[j] = Math.min(dist[j], g[t][j]);
}
return res;
}
public static void main(String[] args) throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String[] s = br.readLine().split(" ");
int n = Integer.parseInt(s[0]);
int m = Integer.parseInt(s[1]);
for(int i = 0; i < N; i++){
Arrays.fill(g[i], INF);
}
while(m-- > 0){
s = br.readLine().split(" ");
int u = Integer.parseInt(s[0]);
int v = Integer.parseInt(s[1]);
int w = Integer.parseInt(s[2]);
// 稠密图用邻接矩阵来存
g[u][v] = g[v][u] = Math.min(g[u][v], w);
}
if(prim(n) == INF) System.out.println("impossible");
else System.out.println(res);
}
}