67、分组背包问题

分组背包问题

题目描述

有 N 组物品和一个容量是 V 的背包。

每组物品有若干个,同一组内的物品最多只能选一个。

每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。

接下来有 N 组数据:

  • 每组数据第一行有一个整数 Si,表示第 i 个物品组的物品数量;
  • 每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j 个物品的体积和价值;

输出格式

输出一个整数,表示最大价值。

数据范围

  • 0 < N,V ≤ 100
  • 0 < Si ≤ 100
  • 0 < vij,wij ≤ 100

示例 1:

3 5
2
1 2
2 4
1
3 4
1
4 5

输出样例:

8

Solution

思路

背包问题,循环的顺序物品–>体积–>决策

进阶版

import java.util.*;

class Main{
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        int N = sc.nextInt();
        int V = sc.nextInt();
        int[] dp = new int[V + 10];
        // 循环顺序为 物品种类 -> 体积 -> 决策
        // 还是 01 背包的思想,只不过 01 背包是放或者不放
        // 分组背包就是多一层循环,放或者不放第 i 个,一组里只能放一个
        for(int i = 1; i <= N; i++){
            int s = sc.nextInt();
            int[] v = new int[s];
            int[] w = new int[s];
            for(int k = 0; k < s; k++){
                v[k] = sc.nextInt();
                w[k] = sc.nextInt();
            }
            for(int j = V; j >= 0; j--){
                for(int k = 0; k < s; k++){
                    if(j >= v[k])  dp[j] = Math.max(dp[j], dp[j - v[k]] + w[k]);
                }
            }
        }
        sc.close();
        System.out.println(dp[V]);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值