分组背包问题
题目描述
有 N 组物品和一个容量是 V 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式:
第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。
接下来有 N 组数据:
- 每组数据第一行有一个整数 Si,表示第 i 个物品组的物品数量;
- 每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j 个物品的体积和价值;
输出格式:
输出一个整数,表示最大价值。
数据范围:
- 0 < N,V ≤ 100
- 0 < Si ≤ 100
- 0 < vij,wij ≤ 100
示例 1:
3 5
2
1 2
2 4
1
3 4
1
4 5
输出样例:
8
Solution
思路:
背包问题,循环的顺序物品–>体积–>决策。
进阶版:
import java.util.*;
class Main{
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int N = sc.nextInt();
int V = sc.nextInt();
int[] dp = new int[V + 10];
// 循环顺序为 物品种类 -> 体积 -> 决策
// 还是 01 背包的思想,只不过 01 背包是放或者不放
// 分组背包就是多一层循环,放或者不放第 i 个,一组里只能放一个
for(int i = 1; i <= N; i++){
int s = sc.nextInt();
int[] v = new int[s];
int[] w = new int[s];
for(int k = 0; k < s; k++){
v[k] = sc.nextInt();
w[k] = sc.nextInt();
}
for(int j = V; j >= 0; j--){
for(int k = 0; k < s; k++){
if(j >= v[k]) dp[j] = Math.max(dp[j], dp[j - v[k]] + w[k]);
}
}
}
sc.close();
System.out.println(dp[V]);
}
}