图卷积
RouTineD
这个作者很懒,什么都没留下…
展开
-
Numpy实现图卷积网络
由于图结构非常复杂且信息量很大,因此对于图的机器学习是一项艰巨的任务。本文介绍了如何使用图卷积网络(GCN)对图进行深度学习,GCN 是一种可直接作用于图并利用其结构信息的强大神经网络。本文将介绍 GCN,并使用代码示例说明信息是如何通过 GCN 的隐藏层传播的。读者将看到 GCN 如何聚合来自前一层的信息,以及这种机制如何生成图中节点的有用特征表征。何为图卷积网络?GCN 是一类非常强大的用于图...转载 2019-07-09 15:41:59 · 3589 阅读 · 0 评论 -
图卷积-动作识别-姿态预测三篇论文归纳
名称Actional-Structural Graph Convolutional Networks forSkeleton-based Action RecognitionConvolutional Neural Networks on Graphswith Fast Localized Spectral FilteringDeep representation learning ...原创 2019-07-09 16:07:38 · 5606 阅读 · 0 评论 -
注解版:基于动态骨骼的动作识别方法ST-GCN(时空图卷积网络模型)
原文链接:解读:基于动态骨骼的动作识别方法ST-GCN(时空图卷积网络模型) 解读:基于动态骨骼的动作识别方法ST-GCN(时空图卷积网络模型...原创 2019-07-09 17:18:12 · 5366 阅读 · 0 评论 -
基于时空图卷积模型的分析归纳
名称ST-GCN目的解决基于人体骨架关键点的人类动作识别问题优点1、空间关系利用人类关节空间关系理解人类行为2、层次性ST-GCN 的层次性消除了手动划分部分或遍历规则的需要。这不仅能获得更强的表达能力和更高的性能(如我们的实验所示),而且还使其易于在不同的环境中推广。缺点特点1、我们提出 ST-GCN,一个基于图的动态骨骼建模方法,这是首个用以完成本...原创 2019-07-10 22:27:49 · 1383 阅读 · 0 评论